e2db636871432ded455d6c7ae810f750c6ea1bf5
[openwrt.git] / target / linux / cns3xxx / files / drivers / net / ethernet / cavium / cns3xxx_eth.c
1 /*
2  * Cavium CNS3xxx Gigabit driver for Linux
3  *
4  * Copyright 2011 Gateworks Corporation
5  *                Chris Lang <clang@gateworks.com>
6  *
7  * This program is free software; you can redistribute it and/or modify it
8  * under the terms of version 2 of the GNU General Public License
9  * as published by the Free Software Foundation.
10  *
11  */
12
13 #include <linux/delay.h>
14 #include <linux/module.h>
15 #include <linux/dma-mapping.h>
16 #include <linux/dmapool.h>
17 #include <linux/etherdevice.h>
18 #include <linux/interrupt.h>
19 #include <linux/io.h>
20 #include <linux/kernel.h>
21 #include <linux/phy.h>
22 #include <linux/platform_device.h>
23 #include <linux/platform_data/cns3xxx.h>
24 #include <linux/skbuff.h>
25
26 #define DRV_NAME "cns3xxx_eth"
27
28 #define RX_DESCS 256
29 #define TX_DESCS 128
30 #define TX_DESC_RESERVE 20
31
32 #define RX_POOL_ALLOC_SIZE (sizeof(struct rx_desc) * RX_DESCS)
33 #define TX_POOL_ALLOC_SIZE (sizeof(struct tx_desc) * TX_DESCS)
34 #define REGS_SIZE 336
35
36 #define RX_BUFFER_ALIGN 64
37 #define RX_BUFFER_ALIGN_MASK (~(RX_BUFFER_ALIGN - 1))
38
39 #define SKB_HEAD_ALIGN (((PAGE_SIZE - NET_SKB_PAD) % RX_BUFFER_ALIGN) + NET_SKB_PAD + NET_IP_ALIGN)
40 #define RX_SEGMENT_ALLOC_SIZE 2048
41 #define RX_SEGMENT_BUFSIZE (SKB_WITH_OVERHEAD(RX_SEGMENT_ALLOC_SIZE))
42 #define RX_SEGMENT_MRU (((RX_SEGMENT_BUFSIZE - SKB_HEAD_ALIGN) & RX_BUFFER_ALIGN_MASK) - NET_IP_ALIGN)
43 #define MAX_MTU 9500
44
45 #define NAPI_WEIGHT 64
46
47 /* MDIO Defines */
48 #define MDIO_CMD_COMPLETE 0x00008000
49 #define MDIO_WRITE_COMMAND 0x00002000
50 #define MDIO_READ_COMMAND 0x00004000
51 #define MDIO_REG_OFFSET 8
52 #define MDIO_VALUE_OFFSET 16
53
54 /* Descritor Defines */
55 #define END_OF_RING 0x40000000
56 #define FIRST_SEGMENT 0x20000000
57 #define LAST_SEGMENT 0x10000000
58 #define FORCE_ROUTE 0x04000000
59 #define IP_CHECKSUM 0x00040000
60 #define UDP_CHECKSUM 0x00020000
61 #define TCP_CHECKSUM 0x00010000
62
63 /* Port Config Defines */
64 #define PORT_BP_ENABLE 0x00020000
65 #define PORT_DISABLE 0x00040000
66 #define PORT_LEARN_DIS 0x00080000
67 #define PORT_BLOCK_STATE 0x00100000
68 #define PORT_BLOCK_MODE 0x00200000
69
70 #define PROMISC_OFFSET 29
71
72 /* Global Config Defines */
73 #define UNKNOWN_VLAN_TO_CPU 0x02000000
74 #define ACCEPT_CRC_PACKET 0x00200000
75 #define CRC_STRIPPING 0x00100000
76
77 /* VLAN Config Defines */
78 #define NIC_MODE 0x00008000
79 #define VLAN_UNAWARE 0x00000001
80
81 /* DMA AUTO Poll Defines */
82 #define TS_POLL_EN 0x00000020
83 #define TS_SUSPEND 0x00000010
84 #define FS_POLL_EN 0x00000002
85 #define FS_SUSPEND 0x00000001
86
87 /* DMA Ring Control Defines */
88 #define QUEUE_THRESHOLD 0x000000f0
89 #define CLR_FS_STATE 0x80000000
90
91 /* Interrupt Status Defines */
92 #define MAC0_STATUS_CHANGE 0x00004000
93 #define MAC1_STATUS_CHANGE 0x00008000
94 #define MAC2_STATUS_CHANGE 0x00010000
95 #define MAC0_RX_ERROR 0x00100000
96 #define MAC1_RX_ERROR 0x00200000
97 #define MAC2_RX_ERROR 0x00400000
98
99 struct tx_desc
100 {
101         u32 sdp; /* segment data pointer */
102
103         union {
104                 struct {
105                         u32 sdl:16; /* segment data length */
106                         u32 tco:1;
107                         u32 uco:1;
108                         u32 ico:1;
109                         u32 rsv_1:3; /* reserve */
110                         u32 pri:3;
111                         u32 fp:1; /* force priority */
112                         u32 fr:1;
113                         u32 interrupt:1;
114                         u32 lsd:1;
115                         u32 fsd:1;
116                         u32 eor:1;
117                         u32 cown:1;
118                 };
119                 u32 config0;
120         };
121
122         union {
123                 struct {
124                         u32 ctv:1;
125                         u32 stv:1;
126                         u32 sid:4;
127                         u32 inss:1;
128                         u32 dels:1;
129                         u32 rsv_2:9;
130                         u32 pmap:5;
131                         u32 mark:3;
132                         u32 ewan:1;
133                         u32 fewan:1;
134                         u32 rsv_3:5;
135                 };
136                 u32 config1;
137         };
138
139         union {
140                 struct {
141                         u32 c_vid:12;
142                         u32 c_cfs:1;
143                         u32 c_pri:3;
144                         u32 s_vid:12;
145                         u32 s_dei:1;
146                         u32 s_pri:3;
147                 };
148                 u32 config2;
149         };
150
151         u8 alignment[16]; /* for 32 byte */
152 };
153
154 struct rx_desc
155 {
156         u32 sdp; /* segment data pointer */
157
158         union {
159                 struct {
160                         u32 sdl:16; /* segment data length */
161                         u32 l4f:1;
162                         u32 ipf:1;
163                         u32 prot:4;
164                         u32 hr:6;
165                         u32 lsd:1;
166                         u32 fsd:1;
167                         u32 eor:1;
168                         u32 cown:1;
169                 };
170                 u32 config0;
171         };
172
173         union {
174                 struct {
175                         u32 ctv:1;
176                         u32 stv:1;
177                         u32 unv:1;
178                         u32 iwan:1;
179                         u32 exdv:1;
180                         u32 e_wan:1;
181                         u32 rsv_1:2;
182                         u32 sp:3;
183                         u32 crc_err:1;
184                         u32 un_eth:1;
185                         u32 tc:2;
186                         u32 rsv_2:1;
187                         u32 ip_offset:5;
188                         u32 rsv_3:11;
189                 };
190                 u32 config1;
191         };
192
193         union {
194                 struct {
195                         u32 c_vid:12;
196                         u32 c_cfs:1;
197                         u32 c_pri:3;
198                         u32 s_vid:12;
199                         u32 s_dei:1;
200                         u32 s_pri:3;
201                 };
202                 u32 config2;
203         };
204
205         u8 alignment[16]; /* for 32 byte alignment */
206 };
207
208
209 struct switch_regs {
210         u32 phy_control;
211         u32 phy_auto_addr;
212         u32 mac_glob_cfg;
213         u32 mac_cfg[4];
214         u32 mac_pri_ctrl[5], __res;
215         u32 etype[2];
216         u32 udp_range[4];
217         u32 prio_etype_udp;
218         u32 prio_ipdscp[8];
219         u32 tc_ctrl;
220         u32 rate_ctrl;
221         u32 fc_glob_thrs;
222         u32 fc_port_thrs;
223         u32 mc_fc_glob_thrs;
224         u32 dc_glob_thrs;
225         u32 arl_vlan_cmd;
226         u32 arl_ctrl[3];
227         u32 vlan_cfg;
228         u32 pvid[2];
229         u32 vlan_ctrl[3];
230         u32 session_id[8];
231         u32 intr_stat;
232         u32 intr_mask;
233         u32 sram_test;
234         u32 mem_queue;
235         u32 farl_ctrl;
236         u32 fc_input_thrs, __res1[2];
237         u32 clk_skew_ctrl;
238         u32 mac_glob_cfg_ext, __res2[2];
239         u32 dma_ring_ctrl;
240         u32 dma_auto_poll_cfg;
241         u32 delay_intr_cfg, __res3;
242         u32 ts_dma_ctrl0;
243         u32 ts_desc_ptr0;
244         u32 ts_desc_base_addr0, __res4;
245         u32 fs_dma_ctrl0;
246         u32 fs_desc_ptr0;
247         u32 fs_desc_base_addr0, __res5;
248         u32 ts_dma_ctrl1;
249         u32 ts_desc_ptr1;
250         u32 ts_desc_base_addr1, __res6;
251         u32 fs_dma_ctrl1;
252         u32 fs_desc_ptr1;
253         u32 fs_desc_base_addr1;
254         u32 __res7[109];
255         u32 mac_counter0[13];
256 };
257
258 struct _tx_ring {
259         struct tx_desc *desc;
260         dma_addr_t phys_addr;
261         struct tx_desc *cur_addr;
262         struct sk_buff *buff_tab[TX_DESCS];
263         unsigned int phys_tab[TX_DESCS];
264         u32 free_index;
265         u32 count_index;
266         u32 cur_index;
267         int num_used;
268         int num_count;
269         bool stopped;
270 };
271
272 struct _rx_ring {
273         struct rx_desc *desc;
274         dma_addr_t phys_addr;
275         struct rx_desc *cur_addr;
276         void *buff_tab[RX_DESCS];
277         unsigned int phys_tab[RX_DESCS];
278         u32 cur_index;
279         u32 alloc_index;
280         int alloc_count;
281 };
282
283 struct sw {
284         struct switch_regs __iomem *regs;
285         struct napi_struct napi;
286         struct cns3xxx_plat_info *plat;
287         struct _tx_ring tx_ring;
288         struct _rx_ring rx_ring;
289         struct sk_buff *frag_first;
290         struct sk_buff *frag_last;
291         struct device *dev;
292         int rx_irq;
293         int stat_irq;
294 };
295
296 struct port {
297         struct net_device *netdev;
298         struct phy_device *phydev;
299         struct sw *sw;
300         int id;                 /* logical port ID */
301         int speed, duplex;
302 };
303
304 static spinlock_t mdio_lock;
305 static DEFINE_SPINLOCK(tx_lock);
306 static struct switch_regs __iomem *mdio_regs; /* mdio command and status only */
307 struct mii_bus *mdio_bus;
308 static int ports_open;
309 static struct port *switch_port_tab[4];
310 static struct dma_pool *rx_dma_pool;
311 static struct dma_pool *tx_dma_pool;
312 struct net_device *napi_dev;
313
314 static int cns3xxx_mdio_cmd(struct mii_bus *bus, int phy_id, int location,
315                            int write, u16 cmd)
316 {
317         int cycles = 0;
318         u32 temp = 0;
319
320         temp = __raw_readl(&mdio_regs->phy_control);
321         temp |= MDIO_CMD_COMPLETE;
322         __raw_writel(temp, &mdio_regs->phy_control);
323         udelay(10);
324
325         if (write) {
326                 temp = (cmd << MDIO_VALUE_OFFSET);
327                 temp |= MDIO_WRITE_COMMAND;
328         } else {
329                 temp = MDIO_READ_COMMAND;
330         }
331         temp |= ((location & 0x1f) << MDIO_REG_OFFSET);
332         temp |= (phy_id & 0x1f);
333
334         __raw_writel(temp, &mdio_regs->phy_control);
335
336         while (((__raw_readl(&mdio_regs->phy_control) & MDIO_CMD_COMPLETE) == 0)
337                         && cycles < 5000) {
338                 udelay(1);
339                 cycles++;
340         }
341
342         if (cycles == 5000) {
343                 printk(KERN_ERR "%s #%i: MII transaction failed\n", bus->name,
344                        phy_id);
345                 return -1;
346         }
347
348         temp = __raw_readl(&mdio_regs->phy_control);
349         temp |= MDIO_CMD_COMPLETE;
350         __raw_writel(temp, &mdio_regs->phy_control);
351
352         if (write)
353                 return 0;
354
355         return ((temp >> MDIO_VALUE_OFFSET) & 0xFFFF);
356 }
357
358 static int cns3xxx_mdio_read(struct mii_bus *bus, int phy_id, int location)
359 {
360         unsigned long flags;
361         int ret;
362
363         spin_lock_irqsave(&mdio_lock, flags);
364         ret = cns3xxx_mdio_cmd(bus, phy_id, location, 0, 0);
365         spin_unlock_irqrestore(&mdio_lock, flags);
366         return ret;
367 }
368
369 static int cns3xxx_mdio_write(struct mii_bus *bus, int phy_id, int location,
370                              u16 val)
371 {
372         unsigned long flags;
373         int ret;
374
375         spin_lock_irqsave(&mdio_lock, flags);
376         ret = cns3xxx_mdio_cmd(bus, phy_id, location, 1, val);
377         spin_unlock_irqrestore(&mdio_lock, flags);
378         return ret;
379 }
380
381 static int cns3xxx_mdio_register(void __iomem *base)
382 {
383         int err;
384
385         if (!(mdio_bus = mdiobus_alloc()))
386                 return -ENOMEM;
387
388         mdio_regs = base;
389
390         spin_lock_init(&mdio_lock);
391         mdio_bus->name = "CNS3xxx MII Bus";
392         mdio_bus->read = &cns3xxx_mdio_read;
393         mdio_bus->write = &cns3xxx_mdio_write;
394         strcpy(mdio_bus->id, "0");
395
396         if ((err = mdiobus_register(mdio_bus)))
397                 mdiobus_free(mdio_bus);
398         return err;
399 }
400
401 static void cns3xxx_mdio_remove(void)
402 {
403         mdiobus_unregister(mdio_bus);
404         mdiobus_free(mdio_bus);
405 }
406
407 static void enable_tx_dma(struct sw *sw)
408 {
409         __raw_writel(0x1, &sw->regs->ts_dma_ctrl0);
410 }
411
412 static void enable_rx_dma(struct sw *sw)
413 {
414         __raw_writel(0x1, &sw->regs->fs_dma_ctrl0);
415 }
416
417 static void cns3xxx_adjust_link(struct net_device *dev)
418 {
419         struct port *port = netdev_priv(dev);
420         struct phy_device *phydev = port->phydev;
421
422         if (!phydev->link) {
423                 if (port->speed) {
424                         port->speed = 0;
425                         printk(KERN_INFO "%s: link down\n", dev->name);
426                 }
427                 return;
428         }
429
430         if (port->speed == phydev->speed && port->duplex == phydev->duplex)
431                 return;
432
433         port->speed = phydev->speed;
434         port->duplex = phydev->duplex;
435
436         printk(KERN_INFO "%s: link up, speed %u Mb/s, %s duplex\n",
437                dev->name, port->speed, port->duplex ? "full" : "half");
438 }
439
440 static void eth_schedule_poll(struct sw *sw)
441 {
442         if (unlikely(!napi_schedule_prep(&sw->napi)))
443                 return;
444
445         disable_irq_nosync(sw->rx_irq);
446         __napi_schedule(&sw->napi);
447 }
448
449 irqreturn_t eth_rx_irq(int irq, void *pdev)
450 {
451         struct net_device *dev = pdev;
452         struct sw *sw = netdev_priv(dev);
453         eth_schedule_poll(sw);
454         return (IRQ_HANDLED);
455 }
456
457 irqreturn_t eth_stat_irq(int irq, void *pdev)
458 {
459         struct net_device *dev = pdev;
460         struct sw *sw = netdev_priv(dev);
461         u32 cfg;
462         u32 stat = __raw_readl(&sw->regs->intr_stat);
463         __raw_writel(0xffffffff, &sw->regs->intr_stat);
464
465         if (stat & MAC2_RX_ERROR)
466                 switch_port_tab[3]->netdev->stats.rx_dropped++;
467         if (stat & MAC1_RX_ERROR)
468                 switch_port_tab[1]->netdev->stats.rx_dropped++;
469         if (stat & MAC0_RX_ERROR)
470                 switch_port_tab[0]->netdev->stats.rx_dropped++;
471
472         if (stat & MAC0_STATUS_CHANGE) {
473                 cfg = __raw_readl(&sw->regs->mac_cfg[0]);
474                 switch_port_tab[0]->phydev->link = (cfg & 0x1);
475                 switch_port_tab[0]->phydev->duplex = ((cfg >> 4) & 0x1);
476                 if (((cfg >> 2) & 0x3) == 2)
477                         switch_port_tab[0]->phydev->speed = 1000;
478                 else if (((cfg >> 2) & 0x3) == 1)
479                         switch_port_tab[0]->phydev->speed = 100;
480                 else
481                         switch_port_tab[0]->phydev->speed = 10;
482                 cns3xxx_adjust_link(switch_port_tab[0]->netdev);
483         }
484
485         if (stat & MAC1_STATUS_CHANGE) {
486                 cfg = __raw_readl(&sw->regs->mac_cfg[1]);
487                 switch_port_tab[1]->phydev->link = (cfg & 0x1);
488                 switch_port_tab[1]->phydev->duplex = ((cfg >> 4) & 0x1);
489                 if (((cfg >> 2) & 0x3) == 2)
490                         switch_port_tab[1]->phydev->speed = 1000;
491                 else if (((cfg >> 2) & 0x3) == 1)
492                         switch_port_tab[1]->phydev->speed = 100;
493                 else
494                         switch_port_tab[1]->phydev->speed = 10;
495                 cns3xxx_adjust_link(switch_port_tab[1]->netdev);
496         }
497
498         if (stat & MAC2_STATUS_CHANGE) {
499                 cfg = __raw_readl(&sw->regs->mac_cfg[3]);
500                 switch_port_tab[3]->phydev->link = (cfg & 0x1);
501                 switch_port_tab[3]->phydev->duplex = ((cfg >> 4) & 0x1);
502                 if (((cfg >> 2) & 0x3) == 2)
503                         switch_port_tab[3]->phydev->speed = 1000;
504                 else if (((cfg >> 2) & 0x3) == 1)
505                         switch_port_tab[3]->phydev->speed = 100;
506                 else
507                         switch_port_tab[3]->phydev->speed = 10;
508                 cns3xxx_adjust_link(switch_port_tab[3]->netdev);
509         }
510
511         return (IRQ_HANDLED);
512 }
513
514
515 static void cns3xxx_alloc_rx_buf(struct sw *sw, int received)
516 {
517         struct _rx_ring *rx_ring = &sw->rx_ring;
518         unsigned int i = rx_ring->alloc_index;
519         struct rx_desc *desc = &(rx_ring)->desc[i];
520         void *buf;
521         unsigned int phys;
522
523         for (received += rx_ring->alloc_count; received > 0; received--) {
524                 buf = kmalloc(RX_SEGMENT_ALLOC_SIZE, GFP_ATOMIC);
525                 if (!buf)
526                         break;
527
528                 phys = dma_map_single(sw->dev, buf + SKB_HEAD_ALIGN,
529                                       RX_SEGMENT_MRU, DMA_FROM_DEVICE);
530                 if (dma_mapping_error(sw->dev, phys)) {
531                         kfree(buf);
532                         break;
533                 }
534
535                 desc->sdl = RX_SEGMENT_MRU;
536                 desc->sdp = phys;
537
538                 wmb();
539
540                 /* put the new buffer on RX-free queue */
541                 rx_ring->buff_tab[i] = buf;
542                 rx_ring->phys_tab[i] = phys;
543                 if (i == RX_DESCS - 1) {
544                         i = 0;
545                         desc->config0 = END_OF_RING | FIRST_SEGMENT |
546                                         LAST_SEGMENT | RX_SEGMENT_MRU;
547                         desc = &(rx_ring)->desc[i];
548                 } else {
549                         desc->config0 = FIRST_SEGMENT | LAST_SEGMENT |
550                                         RX_SEGMENT_MRU;
551                         i++;
552                         desc++;
553                 }
554         }
555
556         rx_ring->alloc_count = received;
557         rx_ring->alloc_index = i;
558 }
559
560 static void eth_check_num_used(struct _tx_ring *tx_ring)
561 {
562         bool stop = false;
563         int i;
564
565         if (tx_ring->num_used >= TX_DESCS - TX_DESC_RESERVE)
566                 stop = true;
567
568         if (tx_ring->stopped == stop)
569                 return;
570
571         tx_ring->stopped = stop;
572         for (i = 0; i < 4; i++) {
573                 struct port *port = switch_port_tab[i];
574                 struct net_device *dev;
575
576                 if (!port)
577                         continue;
578
579                 dev = port->netdev;
580                 if (stop)
581                         netif_stop_queue(dev);
582                 else
583                         netif_wake_queue(dev);
584         }
585 }
586
587 static void eth_complete_tx(struct sw *sw)
588 {
589         struct _tx_ring *tx_ring = &sw->tx_ring;
590         struct tx_desc *desc;
591         int i;
592         int index;
593         int num_used = tx_ring->num_used;
594         struct sk_buff *skb;
595
596         index = tx_ring->free_index;
597         desc = &(tx_ring)->desc[index];
598         for (i = 0; i < num_used; i++) {
599                 if (desc->cown) {
600                         skb = tx_ring->buff_tab[index];
601                         tx_ring->buff_tab[index] = 0;
602                         if (skb)
603                                 dev_kfree_skb_any(skb);
604                         dma_unmap_single(sw->dev, tx_ring->phys_tab[index],
605                                 desc->sdl, DMA_TO_DEVICE);
606                         if (++index == TX_DESCS) {
607                                 index = 0;
608                                 desc = &(tx_ring)->desc[index];
609                         } else {
610                                 desc++;
611                         }
612                 } else {
613                         break;
614                 }
615         }
616         tx_ring->free_index = index;
617         tx_ring->num_used -= i;
618         eth_check_num_used(tx_ring);
619 }
620
621 static int eth_poll(struct napi_struct *napi, int budget)
622 {
623         struct sw *sw = container_of(napi, struct sw, napi);
624         struct _rx_ring *rx_ring = &sw->rx_ring;
625         int received = 0;
626         unsigned int length;
627         unsigned int i = rx_ring->cur_index;
628         struct rx_desc *desc = &(rx_ring)->desc[i];
629         unsigned int alloc_count = rx_ring->alloc_count;
630
631         while (desc->cown && alloc_count + received < RX_DESCS - 1) {
632                 struct sk_buff *skb;
633                 int reserve = SKB_HEAD_ALIGN;
634
635                 if (received >= budget)
636                         break;
637
638                 /* process received frame */
639                 dma_unmap_single(sw->dev, rx_ring->phys_tab[i],
640                                  RX_SEGMENT_MRU, DMA_FROM_DEVICE);
641
642                 skb = build_skb(rx_ring->buff_tab[i], 0);
643                 if (!skb)
644                         break;
645
646                 skb->dev = switch_port_tab[desc->sp]->netdev;
647
648                 length = desc->sdl;
649                 if (desc->fsd && !desc->lsd)
650                         length = RX_SEGMENT_MRU;
651
652                 if (!desc->fsd) {
653                         reserve -= NET_IP_ALIGN;
654                         if (!desc->lsd)
655                                 length += NET_IP_ALIGN;
656                 }
657
658                 skb_reserve(skb, reserve);
659                 skb_put(skb, length);
660
661                 if (!sw->frag_first)
662                         sw->frag_first = skb;
663                 else {
664                         if (sw->frag_first == sw->frag_last)
665                                 skb_frag_add_head(sw->frag_first, skb);
666                         else
667                                 sw->frag_last->next = skb;
668                         sw->frag_first->len += skb->len;
669                         sw->frag_first->data_len += skb->len;
670                         sw->frag_first->truesize += skb->truesize;
671                 }
672                 sw->frag_last = skb;
673
674                 if (desc->lsd) {
675                         struct net_device *dev;
676
677                         skb = sw->frag_first;
678                         dev = skb->dev;
679                         skb->protocol = eth_type_trans(skb, dev);
680
681                         dev->stats.rx_packets++;
682                         dev->stats.rx_bytes += skb->len;
683
684                         /* RX Hardware checksum offload */
685                         skb->ip_summed = CHECKSUM_NONE;
686                         switch (desc->prot) {
687                                 case 1:
688                                 case 2:
689                                 case 5:
690                                 case 6:
691                                 case 13:
692                                 case 14:
693                                         if (!desc->l4f) {
694                                                 skb->ip_summed = CHECKSUM_UNNECESSARY;
695                                                 napi_gro_receive(napi, skb);
696                                                 break;
697                                         }
698                                         /* fall through */
699                                 default:
700                                         netif_receive_skb(skb);
701                                         break;
702                         }
703
704                         sw->frag_first = NULL;
705                         sw->frag_last = NULL;
706                 }
707
708                 received++;
709                 if (++i == RX_DESCS) {
710                         i = 0;
711                         desc = &(rx_ring)->desc[i];
712                 } else {
713                         desc++;
714                 }
715         }
716
717         rx_ring->cur_index = i;
718         if (!received) {
719                 napi_complete(napi);
720                 enable_irq(sw->rx_irq);
721
722                 /* if rx descriptors are full schedule another poll */
723                 if (rx_ring->desc[(i-1) & (RX_DESCS-1)].cown)
724                         eth_schedule_poll(sw);
725         }
726
727         spin_lock_bh(&tx_lock);
728         eth_complete_tx(sw);
729         spin_unlock_bh(&tx_lock);
730
731         cns3xxx_alloc_rx_buf(sw, received);
732
733         wmb();
734         enable_rx_dma(sw);
735
736         return received;
737 }
738
739 static void eth_set_desc(struct sw *sw, struct _tx_ring *tx_ring, int index,
740                          int index_last, void *data, int len, u32 config0,
741                          u32 pmap)
742 {
743         struct tx_desc *tx_desc = &(tx_ring)->desc[index];
744         unsigned int phys;
745
746         phys = dma_map_single(sw->dev, data, len, DMA_TO_DEVICE);
747         tx_desc->sdp = phys;
748         tx_desc->pmap = pmap;
749         tx_ring->phys_tab[index] = phys;
750
751         config0 |= len;
752         if (index == TX_DESCS - 1)
753                 config0 |= END_OF_RING;
754         if (index == index_last)
755                 config0 |= LAST_SEGMENT;
756
757         wmb();
758         tx_desc->config0 = config0;
759 }
760
761 static int eth_xmit(struct sk_buff *skb, struct net_device *dev)
762 {
763         struct port *port = netdev_priv(dev);
764         struct sw *sw = port->sw;
765         struct _tx_ring *tx_ring = &sw->tx_ring;
766         struct sk_buff *skb1;
767         char pmap = (1 << port->id);
768         int nr_frags = skb_shinfo(skb)->nr_frags;
769         int nr_desc = nr_frags;
770         int index0, index, index_last;
771         int len0;
772         unsigned int i;
773         u32 config0;
774
775         if (pmap == 8)
776                 pmap = (1 << 4);
777
778         skb_walk_frags(skb, skb1)
779                 nr_desc++;
780
781         eth_schedule_poll(sw);
782         spin_lock_bh(&tx_lock);
783         if ((tx_ring->num_used + nr_desc + 1) >= TX_DESCS) {
784                 spin_unlock_bh(&tx_lock);
785                 return NETDEV_TX_BUSY;
786         }
787
788         index = index0 = tx_ring->cur_index;
789         index_last = (index0 + nr_desc) % TX_DESCS;
790         tx_ring->cur_index = (index_last + 1) % TX_DESCS;
791
792         spin_unlock_bh(&tx_lock);
793
794         config0 = FORCE_ROUTE;
795         if (skb->ip_summed == CHECKSUM_PARTIAL)
796                 config0 |= UDP_CHECKSUM | TCP_CHECKSUM;
797
798         len0 = skb->len;
799
800         /* fragments */
801         for (i = 0; i < nr_frags; i++) {
802                 struct skb_frag_struct *frag;
803                 void *addr;
804
805                 index = (index + 1) % TX_DESCS;
806
807                 frag = &skb_shinfo(skb)->frags[i];
808                 addr = page_address(skb_frag_page(frag)) + frag->page_offset;
809
810                 eth_set_desc(sw, tx_ring, index, index_last, addr, frag->size,
811                              config0, pmap);
812         }
813
814         if (nr_frags)
815                 len0 = skb->len - skb->data_len;
816
817         skb_walk_frags(skb, skb1) {
818                 index = (index + 1) % TX_DESCS;
819                 len0 -= skb1->len;
820
821                 eth_set_desc(sw, tx_ring, index, index_last, skb1->data,
822                              skb1->len, config0, pmap);
823         }
824
825         tx_ring->buff_tab[index0] = skb;
826         eth_set_desc(sw, tx_ring, index0, index_last, skb->data, len0,
827                      config0 | FIRST_SEGMENT, pmap);
828
829         wmb();
830
831         spin_lock(&tx_lock);
832         tx_ring->num_used += nr_desc + 1;
833         spin_unlock(&tx_lock);
834
835         dev->stats.tx_packets++;
836         dev->stats.tx_bytes += skb->len;
837
838         enable_tx_dma(sw);
839
840         return NETDEV_TX_OK;
841 }
842
843 static int eth_ioctl(struct net_device *dev, struct ifreq *req, int cmd)
844 {
845         struct port *port = netdev_priv(dev);
846
847         if (!netif_running(dev))
848                 return -EINVAL;
849         return phy_mii_ioctl(port->phydev, req, cmd);
850 }
851
852 /* ethtool support */
853
854 static void cns3xxx_get_drvinfo(struct net_device *dev,
855                                struct ethtool_drvinfo *info)
856 {
857         strcpy(info->driver, DRV_NAME);
858         strcpy(info->bus_info, "internal");
859 }
860
861 static int cns3xxx_get_settings(struct net_device *dev, struct ethtool_cmd *cmd)
862 {
863         struct port *port = netdev_priv(dev);
864         return phy_ethtool_gset(port->phydev, cmd);
865 }
866
867 static int cns3xxx_set_settings(struct net_device *dev, struct ethtool_cmd *cmd)
868 {
869         struct port *port = netdev_priv(dev);
870         return phy_ethtool_sset(port->phydev, cmd);
871 }
872
873 static int cns3xxx_nway_reset(struct net_device *dev)
874 {
875         struct port *port = netdev_priv(dev);
876         return phy_start_aneg(port->phydev);
877 }
878
879 static struct ethtool_ops cns3xxx_ethtool_ops = {
880         .get_drvinfo = cns3xxx_get_drvinfo,
881         .get_settings = cns3xxx_get_settings,
882         .set_settings = cns3xxx_set_settings,
883         .nway_reset = cns3xxx_nway_reset,
884         .get_link = ethtool_op_get_link,
885 };
886
887
888 static int init_rings(struct sw *sw)
889 {
890         int i;
891         struct _rx_ring *rx_ring = &sw->rx_ring;
892         struct _tx_ring *tx_ring = &sw->tx_ring;
893
894         __raw_writel(0, &sw->regs->fs_dma_ctrl0);
895         __raw_writel(TS_SUSPEND | FS_SUSPEND, &sw->regs->dma_auto_poll_cfg);
896         __raw_writel(QUEUE_THRESHOLD, &sw->regs->dma_ring_ctrl);
897         __raw_writel(CLR_FS_STATE | QUEUE_THRESHOLD, &sw->regs->dma_ring_ctrl);
898
899         __raw_writel(QUEUE_THRESHOLD, &sw->regs->dma_ring_ctrl);
900
901         if (!(rx_dma_pool = dma_pool_create(DRV_NAME, sw->dev,
902                                             RX_POOL_ALLOC_SIZE, 32, 0)))
903                 return -ENOMEM;
904
905         if (!(rx_ring->desc = dma_pool_alloc(rx_dma_pool, GFP_KERNEL,
906                                               &rx_ring->phys_addr)))
907                 return -ENOMEM;
908         memset(rx_ring->desc, 0, RX_POOL_ALLOC_SIZE);
909
910         /* Setup RX buffers */
911         for (i = 0; i < RX_DESCS; i++) {
912                 struct rx_desc *desc = &(rx_ring)->desc[i];
913                 void *buf;
914
915                 buf = kzalloc(RX_SEGMENT_ALLOC_SIZE, GFP_KERNEL);
916                 if (!buf)
917                         return -ENOMEM;
918
919                 desc->sdl = RX_SEGMENT_MRU;
920                 if (i == (RX_DESCS - 1))
921                         desc->eor = 1;
922                 desc->fsd = 1;
923                 desc->lsd = 1;
924
925                 desc->sdp = dma_map_single(sw->dev, buf + SKB_HEAD_ALIGN,
926                                            RX_SEGMENT_MRU, DMA_FROM_DEVICE);
927                 if (dma_mapping_error(sw->dev, desc->sdp))
928                         return -EIO;
929
930                 rx_ring->buff_tab[i] = buf;
931                 rx_ring->phys_tab[i] = desc->sdp;
932                 desc->cown = 0;
933         }
934         __raw_writel(rx_ring->phys_addr, &sw->regs->fs_desc_ptr0);
935         __raw_writel(rx_ring->phys_addr, &sw->regs->fs_desc_base_addr0);
936
937         if (!(tx_dma_pool = dma_pool_create(DRV_NAME, sw->dev,
938                                             TX_POOL_ALLOC_SIZE, 32, 0)))
939                 return -ENOMEM;
940
941         if (!(tx_ring->desc = dma_pool_alloc(tx_dma_pool, GFP_KERNEL,
942                                               &tx_ring->phys_addr)))
943                 return -ENOMEM;
944         memset(tx_ring->desc, 0, TX_POOL_ALLOC_SIZE);
945
946         /* Setup TX buffers */
947         for (i = 0; i < TX_DESCS; i++) {
948                 struct tx_desc *desc = &(tx_ring)->desc[i];
949                 tx_ring->buff_tab[i] = 0;
950
951                 if (i == (TX_DESCS - 1))
952                         desc->eor = 1;
953                 desc->cown = 1;
954         }
955         __raw_writel(tx_ring->phys_addr, &sw->regs->ts_desc_ptr0);
956         __raw_writel(tx_ring->phys_addr, &sw->regs->ts_desc_base_addr0);
957
958         return 0;
959 }
960
961 static void destroy_rings(struct sw *sw)
962 {
963         int i;
964         if (sw->rx_ring.desc) {
965                 for (i = 0; i < RX_DESCS; i++) {
966                         struct _rx_ring *rx_ring = &sw->rx_ring;
967                         struct rx_desc *desc = &(rx_ring)->desc[i];
968                         struct sk_buff *skb = sw->rx_ring.buff_tab[i];
969
970                         if (!skb)
971                                 continue;
972
973                         dma_unmap_single(sw->dev, desc->sdp, RX_SEGMENT_MRU,
974                                          DMA_FROM_DEVICE);
975                         dev_kfree_skb(skb);
976                 }
977                 dma_pool_free(rx_dma_pool, sw->rx_ring.desc, sw->rx_ring.phys_addr);
978                 dma_pool_destroy(rx_dma_pool);
979                 rx_dma_pool = 0;
980                 sw->rx_ring.desc = 0;
981         }
982         if (sw->tx_ring.desc) {
983                 for (i = 0; i < TX_DESCS; i++) {
984                         struct _tx_ring *tx_ring = &sw->tx_ring;
985                         struct tx_desc *desc = &(tx_ring)->desc[i];
986                         struct sk_buff *skb = sw->tx_ring.buff_tab[i];
987                         if (skb) {
988                                 dma_unmap_single(sw->dev, desc->sdp,
989                                         skb->len, DMA_TO_DEVICE);
990                                 dev_kfree_skb(skb);
991                         }
992                 }
993                 dma_pool_free(tx_dma_pool, sw->tx_ring.desc, sw->tx_ring.phys_addr);
994                 dma_pool_destroy(tx_dma_pool);
995                 tx_dma_pool = 0;
996                 sw->tx_ring.desc = 0;
997         }
998 }
999
1000 static int eth_open(struct net_device *dev)
1001 {
1002         struct port *port = netdev_priv(dev);
1003         struct sw *sw = port->sw;
1004         u32 temp;
1005
1006         port->speed = 0;        /* force "link up" message */
1007         phy_start(port->phydev);
1008
1009         netif_start_queue(dev);
1010
1011         if (!ports_open) {
1012                 request_irq(sw->rx_irq, eth_rx_irq, IRQF_SHARED, "gig_switch", napi_dev);
1013                 request_irq(sw->stat_irq, eth_stat_irq, IRQF_SHARED, "gig_stat", napi_dev);
1014                 napi_enable(&sw->napi);
1015                 netif_start_queue(napi_dev);
1016
1017                 __raw_writel(~(MAC0_STATUS_CHANGE | MAC1_STATUS_CHANGE | MAC2_STATUS_CHANGE |
1018                                MAC0_RX_ERROR | MAC1_RX_ERROR | MAC2_RX_ERROR), &sw->regs->intr_mask);
1019
1020                 temp = __raw_readl(&sw->regs->mac_cfg[2]);
1021                 temp &= ~(PORT_DISABLE);
1022                 __raw_writel(temp, &sw->regs->mac_cfg[2]);
1023
1024                 temp = __raw_readl(&sw->regs->dma_auto_poll_cfg);
1025                 temp &= ~(TS_SUSPEND | FS_SUSPEND);
1026                 __raw_writel(temp, &sw->regs->dma_auto_poll_cfg);
1027
1028                 enable_rx_dma(sw);
1029         }
1030         temp = __raw_readl(&sw->regs->mac_cfg[port->id]);
1031         temp &= ~(PORT_DISABLE);
1032         __raw_writel(temp, &sw->regs->mac_cfg[port->id]);
1033
1034         ports_open++;
1035         netif_carrier_on(dev);
1036
1037         return 0;
1038 }
1039
1040 static int eth_close(struct net_device *dev)
1041 {
1042         struct port *port = netdev_priv(dev);
1043         struct sw *sw = port->sw;
1044         u32 temp;
1045
1046         ports_open--;
1047
1048         temp = __raw_readl(&sw->regs->mac_cfg[port->id]);
1049         temp |= (PORT_DISABLE);
1050         __raw_writel(temp, &sw->regs->mac_cfg[port->id]);
1051
1052         netif_stop_queue(dev);
1053
1054         phy_stop(port->phydev);
1055
1056         if (!ports_open) {
1057                 disable_irq(sw->rx_irq);
1058                 free_irq(sw->rx_irq, napi_dev);
1059                 disable_irq(sw->stat_irq);
1060                 free_irq(sw->stat_irq, napi_dev);
1061                 napi_disable(&sw->napi);
1062                 netif_stop_queue(napi_dev);
1063                 temp = __raw_readl(&sw->regs->mac_cfg[2]);
1064                 temp |= (PORT_DISABLE);
1065                 __raw_writel(temp, &sw->regs->mac_cfg[2]);
1066
1067                 __raw_writel(TS_SUSPEND | FS_SUSPEND,
1068                              &sw->regs->dma_auto_poll_cfg);
1069         }
1070
1071         netif_carrier_off(dev);
1072         return 0;
1073 }
1074
1075 static void eth_rx_mode(struct net_device *dev)
1076 {
1077         struct port *port = netdev_priv(dev);
1078         struct sw *sw = port->sw;
1079         u32 temp;
1080
1081         temp = __raw_readl(&sw->regs->mac_glob_cfg);
1082
1083         if (dev->flags & IFF_PROMISC) {
1084                 if (port->id == 3)
1085                         temp |= ((1 << 2) << PROMISC_OFFSET);
1086                 else
1087                         temp |= ((1 << port->id) << PROMISC_OFFSET);
1088         } else {
1089                 if (port->id == 3)
1090                         temp &= ~((1 << 2) << PROMISC_OFFSET);
1091                 else
1092                         temp &= ~((1 << port->id) << PROMISC_OFFSET);
1093         }
1094         __raw_writel(temp, &sw->regs->mac_glob_cfg);
1095 }
1096
1097 static int eth_set_mac(struct net_device *netdev, void *p)
1098 {
1099         struct port *port = netdev_priv(netdev);
1100         struct sw *sw = port->sw;
1101         struct sockaddr *addr = p;
1102         u32 cycles = 0;
1103
1104         if (!is_valid_ether_addr(addr->sa_data))
1105                 return -EADDRNOTAVAIL;
1106
1107         /* Invalidate old ARL Entry */
1108         if (port->id == 3)
1109                 __raw_writel((port->id << 16) | (0x4 << 9), &sw->regs->arl_ctrl[0]);
1110         else
1111                 __raw_writel(((port->id + 1) << 16) | (0x4 << 9), &sw->regs->arl_ctrl[0]);
1112         __raw_writel( ((netdev->dev_addr[0] << 24) | (netdev->dev_addr[1] << 16) |
1113                         (netdev->dev_addr[2] << 8) | (netdev->dev_addr[3])),
1114                         &sw->regs->arl_ctrl[1]);
1115
1116         __raw_writel( ((netdev->dev_addr[4] << 24) | (netdev->dev_addr[5] << 16) |
1117                         (1 << 1)),
1118                         &sw->regs->arl_ctrl[2]);
1119         __raw_writel((1 << 19), &sw->regs->arl_vlan_cmd);
1120
1121         while (((__raw_readl(&sw->regs->arl_vlan_cmd) & (1 << 21)) == 0)
1122                         && cycles < 5000) {
1123                 udelay(1);
1124                 cycles++;
1125         }
1126
1127         cycles = 0;
1128         memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
1129
1130         if (port->id == 3)
1131                 __raw_writel((port->id << 16) | (0x4 << 9), &sw->regs->arl_ctrl[0]);
1132         else
1133                 __raw_writel(((port->id + 1) << 16) | (0x4 << 9), &sw->regs->arl_ctrl[0]);
1134         __raw_writel( ((addr->sa_data[0] << 24) | (addr->sa_data[1] << 16) |
1135                         (addr->sa_data[2] << 8) | (addr->sa_data[3])),
1136                         &sw->regs->arl_ctrl[1]);
1137
1138         __raw_writel( ((addr->sa_data[4] << 24) | (addr->sa_data[5] << 16) |
1139                         (7 << 4) | (1 << 1)), &sw->regs->arl_ctrl[2]);
1140         __raw_writel((1 << 19), &sw->regs->arl_vlan_cmd);
1141
1142         while (((__raw_readl(&sw->regs->arl_vlan_cmd) & (1 << 21)) == 0)
1143                 && cycles < 5000) {
1144                 udelay(1);
1145                 cycles++;
1146         }
1147         return 0;
1148 }
1149
1150 static int cns3xxx_change_mtu(struct net_device *dev, int new_mtu)
1151 {
1152         if (new_mtu > MAX_MTU)
1153                 return -EINVAL;
1154
1155         dev->mtu = new_mtu;
1156         return 0;
1157 }
1158
1159 static const struct net_device_ops cns3xxx_netdev_ops = {
1160         .ndo_open = eth_open,
1161         .ndo_stop = eth_close,
1162         .ndo_start_xmit = eth_xmit,
1163         .ndo_set_rx_mode = eth_rx_mode,
1164         .ndo_do_ioctl = eth_ioctl,
1165         .ndo_change_mtu = cns3xxx_change_mtu,
1166         .ndo_set_mac_address = eth_set_mac,
1167         .ndo_validate_addr = eth_validate_addr,
1168 };
1169
1170 static int eth_init_one(struct platform_device *pdev)
1171 {
1172         int i;
1173         struct port *port;
1174         struct sw *sw;
1175         struct net_device *dev;
1176         struct cns3xxx_plat_info *plat = pdev->dev.platform_data;
1177         char phy_id[MII_BUS_ID_SIZE + 3];
1178         int err;
1179         u32 temp;
1180         struct resource *res;
1181         void __iomem *regs;
1182
1183         res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1184         regs = devm_ioremap_resource(&pdev->dev, res);
1185         if (IS_ERR(regs))
1186                 return PTR_ERR(regs);
1187
1188         err = cns3xxx_mdio_register(regs);
1189         if (err)
1190                 return err;
1191
1192         if (!(napi_dev = alloc_etherdev(sizeof(struct sw)))) {
1193                 err = -ENOMEM;
1194                 goto err_remove_mdio;
1195         }
1196
1197         strcpy(napi_dev->name, "switch%d");
1198         napi_dev->features = NETIF_F_IP_CSUM | NETIF_F_SG | NETIF_F_FRAGLIST;
1199
1200         SET_NETDEV_DEV(napi_dev, &pdev->dev);
1201         sw = netdev_priv(napi_dev);
1202         memset(sw, 0, sizeof(struct sw));
1203         sw->regs = regs;
1204         sw->dev = &pdev->dev;
1205
1206         sw->rx_irq = platform_get_irq_byname(pdev, "eth_rx");
1207         sw->stat_irq = platform_get_irq_byname(pdev, "eth_stat");
1208
1209         temp = __raw_readl(&sw->regs->phy_auto_addr);
1210         temp |= (3 << 30); /* maximum frame length: 9600 bytes */
1211         __raw_writel(temp, &sw->regs->phy_auto_addr);
1212
1213         for (i = 0; i < 4; i++) {
1214                 temp = __raw_readl(&sw->regs->mac_cfg[i]);
1215                 temp |= (PORT_DISABLE);
1216                 __raw_writel(temp, &sw->regs->mac_cfg[i]);
1217         }
1218
1219         temp = PORT_DISABLE;
1220         __raw_writel(temp, &sw->regs->mac_cfg[2]);
1221
1222         temp = __raw_readl(&sw->regs->vlan_cfg);
1223         temp |= NIC_MODE | VLAN_UNAWARE;
1224         __raw_writel(temp, &sw->regs->vlan_cfg);
1225
1226         __raw_writel(UNKNOWN_VLAN_TO_CPU |
1227                      CRC_STRIPPING, &sw->regs->mac_glob_cfg);
1228
1229         if ((err = init_rings(sw)) != 0) {
1230                 destroy_rings(sw);
1231                 err = -ENOMEM;
1232                 goto err_free;
1233         }
1234         platform_set_drvdata(pdev, napi_dev);
1235
1236         netif_napi_add(napi_dev, &sw->napi, eth_poll, NAPI_WEIGHT);
1237
1238         for (i = 0; i < 3; i++) {
1239                 if (!(plat->ports & (1 << i))) {
1240                         continue;
1241                 }
1242
1243                 if (!(dev = alloc_etherdev(sizeof(struct port)))) {
1244                         goto free_ports;
1245                 }
1246
1247                 port = netdev_priv(dev);
1248                 port->netdev = dev;
1249                 if (i == 2)
1250                         port->id = 3;
1251                 else
1252                         port->id = i;
1253                 port->sw = sw;
1254
1255                 temp = __raw_readl(&sw->regs->mac_cfg[port->id]);
1256                 temp |= (PORT_DISABLE | PORT_BLOCK_STATE | PORT_LEARN_DIS);
1257                 __raw_writel(temp, &sw->regs->mac_cfg[port->id]);
1258
1259                 SET_NETDEV_DEV(dev, &pdev->dev);
1260                 dev->netdev_ops = &cns3xxx_netdev_ops;
1261                 dev->ethtool_ops = &cns3xxx_ethtool_ops;
1262                 dev->tx_queue_len = 1000;
1263                 dev->features = NETIF_F_IP_CSUM | NETIF_F_SG | NETIF_F_FRAGLIST;
1264
1265                 switch_port_tab[port->id] = port;
1266                 memcpy(dev->dev_addr, &plat->hwaddr[i], ETH_ALEN);
1267
1268                 snprintf(phy_id, MII_BUS_ID_SIZE + 3, PHY_ID_FMT, "0", plat->phy[i]);
1269                 port->phydev = phy_connect(dev, phy_id, &cns3xxx_adjust_link,
1270                         PHY_INTERFACE_MODE_RGMII);
1271                 if ((err = IS_ERR(port->phydev))) {
1272                         switch_port_tab[port->id] = 0;
1273                         free_netdev(dev);
1274                         goto free_ports;
1275                 }
1276
1277                 port->phydev->irq = PHY_IGNORE_INTERRUPT;
1278
1279                 if ((err = register_netdev(dev))) {
1280                         phy_disconnect(port->phydev);
1281                         switch_port_tab[port->id] = 0;
1282                         free_netdev(dev);
1283                         goto free_ports;
1284                 }
1285
1286                 printk(KERN_INFO "%s: RGMII PHY %i on cns3xxx Switch\n", dev->name, plat->phy[i]);
1287                 netif_carrier_off(dev);
1288                 dev = 0;
1289         }
1290
1291         return 0;
1292
1293 free_ports:
1294         err = -ENOMEM;
1295         for (--i; i >= 0; i--) {
1296                 if (switch_port_tab[i]) {
1297                         port = switch_port_tab[i];
1298                         dev = port->netdev;
1299                         unregister_netdev(dev);
1300                         phy_disconnect(port->phydev);
1301                         switch_port_tab[i] = 0;
1302                         free_netdev(dev);
1303                 }
1304         }
1305 err_free:
1306         free_netdev(napi_dev);
1307 err_remove_mdio:
1308         cns3xxx_mdio_remove();
1309         return err;
1310 }
1311
1312 static int eth_remove_one(struct platform_device *pdev)
1313 {
1314         struct net_device *dev = platform_get_drvdata(pdev);
1315         struct sw *sw = netdev_priv(dev);
1316         int i;
1317         destroy_rings(sw);
1318
1319         for (i = 3; i >= 0; i--) {
1320                 if (switch_port_tab[i]) {
1321                         struct port *port = switch_port_tab[i];
1322                         struct net_device *dev = port->netdev;
1323                         unregister_netdev(dev);
1324                         phy_disconnect(port->phydev);
1325                         switch_port_tab[i] = 0;
1326                         free_netdev(dev);
1327                 }
1328         }
1329
1330         free_netdev(napi_dev);
1331         cns3xxx_mdio_remove();
1332
1333         return 0;
1334 }
1335
1336 static struct platform_driver cns3xxx_eth_driver = {
1337         .driver.name    = DRV_NAME,
1338         .probe          = eth_init_one,
1339         .remove         = eth_remove_one,
1340 };
1341
1342 static int __init eth_init_module(void)
1343 {
1344         return platform_driver_register(&cns3xxx_eth_driver);
1345 }
1346
1347 static void __exit eth_cleanup_module(void)
1348 {
1349         platform_driver_unregister(&cns3xxx_eth_driver);
1350 }
1351
1352 module_init(eth_init_module);
1353 module_exit(eth_cleanup_module);
1354
1355 MODULE_AUTHOR("Chris Lang");
1356 MODULE_DESCRIPTION("Cavium CNS3xxx Ethernet driver");
1357 MODULE_LICENSE("GPL v2");
1358 MODULE_ALIAS("platform:cns3xxx_eth");