kernel: linux/version.h was removed in kernel 2.6.19 and is now replaced by generated...
[15.05/openwrt.git] / target / linux / generic / files / crypto / ocf / crypto.c
1 /*-
2  * Linux port done by David McCullough <david_mccullough@mcafee.com>
3  * Copyright (C) 2006-2010 David McCullough
4  * Copyright (C) 2004-2005 Intel Corporation.
5  * The license and original author are listed below.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * Copyright (c) 2002-2006 Sam Leffler.  All rights reserved.
9  *
10  * modification, are permitted provided that the following conditions
11  * are met:
12  * 1. Redistributions of source code must retain the above copyright
13  *    notice, this list of conditions and the following disclaimer.
14  * 2. Redistributions in binary form must reproduce the above copyright
15  *    notice, this list of conditions and the following disclaimer in the
16  *    documentation and/or other materials provided with the distribution.
17  *
18  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
19  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
20  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
21  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
22  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
23  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
24  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
25  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
26  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
27  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
28  */
29
30 #if 0
31 #include <sys/cdefs.h>
32 __FBSDID("$FreeBSD: src/sys/opencrypto/crypto.c,v 1.27 2007/03/21 03:42:51 sam Exp $");
33 #endif
34
35 /*
36  * Cryptographic Subsystem.
37  *
38  * This code is derived from the Openbsd Cryptographic Framework (OCF)
39  * that has the copyright shown below.  Very little of the original
40  * code remains.
41  */
42 /*-
43  * The author of this code is Angelos D. Keromytis (angelos@cis.upenn.edu)
44  *
45  * This code was written by Angelos D. Keromytis in Athens, Greece, in
46  * February 2000. Network Security Technologies Inc. (NSTI) kindly
47  * supported the development of this code.
48  *
49  * Copyright (c) 2000, 2001 Angelos D. Keromytis
50  *
51  * Permission to use, copy, and modify this software with or without fee
52  * is hereby granted, provided that this entire notice is included in
53  * all source code copies of any software which is or includes a copy or
54  * modification of this software.
55  *
56  * THIS SOFTWARE IS BEING PROVIDED "AS IS", WITHOUT ANY EXPRESS OR
57  * IMPLIED WARRANTY. IN PARTICULAR, NONE OF THE AUTHORS MAKES ANY
58  * REPRESENTATION OR WARRANTY OF ANY KIND CONCERNING THE
59  * MERCHANTABILITY OF THIS SOFTWARE OR ITS FITNESS FOR ANY PARTICULAR
60  * PURPOSE.
61  *
62 __FBSDID("$FreeBSD: src/sys/opencrypto/crypto.c,v 1.16 2005/01/07 02:29:16 imp Exp $");
63  */
64
65
66 #include <linux/version.h>
67 #if (LINUX_VERSION_CODE >= KERNEL_VERSION(2,6,33))
68 #include <generated/autoconf.h>
69 #else
70 #include <linux/autoconf.h>
71 #endif
72 #include <linux/module.h>
73 #include <linux/init.h>
74 #include <linux/list.h>
75 #include <linux/slab.h>
76 #include <linux/wait.h>
77 #include <linux/sched.h>
78 #include <linux/spinlock.h>
79 #include <linux/version.h>
80 #include <cryptodev.h>
81
82 /*
83  * keep track of whether or not we have been initialised, a big
84  * issue if we are linked into the kernel and a driver gets started before
85  * us
86  */
87 static int crypto_initted = 0;
88
89 /*
90  * Crypto drivers register themselves by allocating a slot in the
91  * crypto_drivers table with crypto_get_driverid() and then registering
92  * each algorithm they support with crypto_register() and crypto_kregister().
93  */
94
95 /*
96  * lock on driver table
97  * we track its state as spin_is_locked does not do anything on non-SMP boxes
98  */
99 static spinlock_t       crypto_drivers_lock;
100 static int                      crypto_drivers_locked;          /* for non-SMP boxes */
101
102 #define CRYPTO_DRIVER_LOCK() \
103                         ({ \
104                                 spin_lock_irqsave(&crypto_drivers_lock, d_flags); \
105                                 crypto_drivers_locked = 1; \
106                                 dprintk("%s,%d: DRIVER_LOCK()\n", __FILE__, __LINE__); \
107                          })
108 #define CRYPTO_DRIVER_UNLOCK() \
109                         ({ \
110                                 dprintk("%s,%d: DRIVER_UNLOCK()\n", __FILE__, __LINE__); \
111                                 crypto_drivers_locked = 0; \
112                                 spin_unlock_irqrestore(&crypto_drivers_lock, d_flags); \
113                          })
114 #define CRYPTO_DRIVER_ASSERT() \
115                         ({ \
116                                 if (!crypto_drivers_locked) { \
117                                         dprintk("%s,%d: DRIVER_ASSERT!\n", __FILE__, __LINE__); \
118                                 } \
119                          })
120
121 /*
122  * Crypto device/driver capabilities structure.
123  *
124  * Synchronization:
125  * (d) - protected by CRYPTO_DRIVER_LOCK()
126  * (q) - protected by CRYPTO_Q_LOCK()
127  * Not tagged fields are read-only.
128  */
129 struct cryptocap {
130         device_t        cc_dev;                 /* (d) device/driver */
131         u_int32_t       cc_sessions;            /* (d) # of sessions */
132         u_int32_t       cc_koperations;         /* (d) # os asym operations */
133         /*
134          * Largest possible operator length (in bits) for each type of
135          * encryption algorithm. XXX not used
136          */
137         u_int16_t       cc_max_op_len[CRYPTO_ALGORITHM_MAX + 1];
138         u_int8_t        cc_alg[CRYPTO_ALGORITHM_MAX + 1];
139         u_int8_t        cc_kalg[CRK_ALGORITHM_MAX + 1];
140
141         int             cc_flags;               /* (d) flags */
142 #define CRYPTOCAP_F_CLEANUP     0x80000000      /* needs resource cleanup */
143         int             cc_qblocked;            /* (q) symmetric q blocked */
144         int             cc_kqblocked;           /* (q) asymmetric q blocked */
145
146         int             cc_unqblocked;          /* (q) symmetric q blocked */
147         int             cc_unkqblocked;         /* (q) asymmetric q blocked */
148 };
149 static struct cryptocap *crypto_drivers = NULL;
150 static int crypto_drivers_num = 0;
151
152 /*
153  * There are two queues for crypto requests; one for symmetric (e.g.
154  * cipher) operations and one for asymmetric (e.g. MOD)operations.
155  * A single mutex is used to lock access to both queues.  We could
156  * have one per-queue but having one simplifies handling of block/unblock
157  * operations.
158  */
159 static  int crp_sleep = 0;
160 static LIST_HEAD(crp_q);                /* request queues */
161 static LIST_HEAD(crp_kq);
162
163 static spinlock_t crypto_q_lock;
164
165 int crypto_all_qblocked = 0;  /* protect with Q_LOCK */
166 module_param(crypto_all_qblocked, int, 0444);
167 MODULE_PARM_DESC(crypto_all_qblocked, "Are all crypto queues blocked");
168
169 int crypto_all_kqblocked = 0; /* protect with Q_LOCK */
170 module_param(crypto_all_kqblocked, int, 0444);
171 MODULE_PARM_DESC(crypto_all_kqblocked, "Are all asym crypto queues blocked");
172
173 #define CRYPTO_Q_LOCK() \
174                         ({ \
175                                 spin_lock_irqsave(&crypto_q_lock, q_flags); \
176                                 dprintk("%s,%d: Q_LOCK()\n", __FILE__, __LINE__); \
177                          })
178 #define CRYPTO_Q_UNLOCK() \
179                         ({ \
180                                 dprintk("%s,%d: Q_UNLOCK()\n", __FILE__, __LINE__); \
181                                 spin_unlock_irqrestore(&crypto_q_lock, q_flags); \
182                          })
183
184 /*
185  * There are two queues for processing completed crypto requests; one
186  * for the symmetric and one for the asymmetric ops.  We only need one
187  * but have two to avoid type futzing (cryptop vs. cryptkop).  A single
188  * mutex is used to lock access to both queues.  Note that this lock
189  * must be separate from the lock on request queues to insure driver
190  * callbacks don't generate lock order reversals.
191  */
192 static LIST_HEAD(crp_ret_q);            /* callback queues */
193 static LIST_HEAD(crp_ret_kq);
194
195 static spinlock_t crypto_ret_q_lock;
196 #define CRYPTO_RETQ_LOCK() \
197                         ({ \
198                                 spin_lock_irqsave(&crypto_ret_q_lock, r_flags); \
199                                 dprintk("%s,%d: RETQ_LOCK\n", __FILE__, __LINE__); \
200                          })
201 #define CRYPTO_RETQ_UNLOCK() \
202                         ({ \
203                                 dprintk("%s,%d: RETQ_UNLOCK\n", __FILE__, __LINE__); \
204                                 spin_unlock_irqrestore(&crypto_ret_q_lock, r_flags); \
205                          })
206 #define CRYPTO_RETQ_EMPTY()     (list_empty(&crp_ret_q) && list_empty(&crp_ret_kq))
207
208 #if LINUX_VERSION_CODE < KERNEL_VERSION(2,6,20)
209 static kmem_cache_t *cryptop_zone;
210 static kmem_cache_t *cryptodesc_zone;
211 #else
212 static struct kmem_cache *cryptop_zone;
213 static struct kmem_cache *cryptodesc_zone;
214 #endif
215
216 #if LINUX_VERSION_CODE >= KERNEL_VERSION(2,6,27)
217 #include <linux/sched.h>
218 #define kill_proc(p,s,v)        send_sig(s,find_task_by_vpid(p),0)
219 #endif
220
221 #define debug crypto_debug
222 int crypto_debug = 0;
223 module_param(crypto_debug, int, 0644);
224 MODULE_PARM_DESC(crypto_debug, "Enable debug");
225 EXPORT_SYMBOL(crypto_debug);
226
227 /*
228  * Maximum number of outstanding crypto requests before we start
229  * failing requests.  We need this to prevent DOS when too many
230  * requests are arriving for us to keep up.  Otherwise we will
231  * run the system out of memory.  Since crypto is slow,  we are
232  * usually the bottleneck that needs to say, enough is enough.
233  *
234  * We cannot print errors when this condition occurs,  we are already too
235  * slow,  printing anything will just kill us
236  */
237
238 static int crypto_q_cnt = 0;
239 module_param(crypto_q_cnt, int, 0444);
240 MODULE_PARM_DESC(crypto_q_cnt,
241                 "Current number of outstanding crypto requests");
242
243 static int crypto_q_max = 1000;
244 module_param(crypto_q_max, int, 0644);
245 MODULE_PARM_DESC(crypto_q_max,
246                 "Maximum number of outstanding crypto requests");
247
248 #define bootverbose crypto_verbose
249 static int crypto_verbose = 0;
250 module_param(crypto_verbose, int, 0644);
251 MODULE_PARM_DESC(crypto_verbose,
252                 "Enable verbose crypto startup");
253
254 int     crypto_usercrypto = 1;  /* userland may do crypto reqs */
255 module_param(crypto_usercrypto, int, 0644);
256 MODULE_PARM_DESC(crypto_usercrypto,
257            "Enable/disable user-mode access to crypto support");
258
259 int     crypto_userasymcrypto = 1;      /* userland may do asym crypto reqs */
260 module_param(crypto_userasymcrypto, int, 0644);
261 MODULE_PARM_DESC(crypto_userasymcrypto,
262            "Enable/disable user-mode access to asymmetric crypto support");
263
264 int     crypto_devallowsoft = 0;        /* only use hardware crypto */
265 module_param(crypto_devallowsoft, int, 0644);
266 MODULE_PARM_DESC(crypto_devallowsoft,
267            "Enable/disable use of software crypto support");
268
269 /*
270  * This parameter controls the maximum number of crypto operations to 
271  * do consecutively in the crypto kernel thread before scheduling to allow 
272  * other processes to run. Without it, it is possible to get into a 
273  * situation where the crypto thread never allows any other processes to run.
274  * Default to 1000 which should be less than one second.
275  */
276 static int crypto_max_loopcount = 1000;
277 module_param(crypto_max_loopcount, int, 0644);
278 MODULE_PARM_DESC(crypto_max_loopcount,
279            "Maximum number of crypto ops to do before yielding to other processes");
280
281 static pid_t    cryptoproc = (pid_t) -1;
282 static struct   completion cryptoproc_exited;
283 static DECLARE_WAIT_QUEUE_HEAD(cryptoproc_wait);
284 static pid_t    cryptoretproc = (pid_t) -1;
285 static struct   completion cryptoretproc_exited;
286 static DECLARE_WAIT_QUEUE_HEAD(cryptoretproc_wait);
287
288 static  int crypto_proc(void *arg);
289 static  int crypto_ret_proc(void *arg);
290 static  int crypto_invoke(struct cryptocap *cap, struct cryptop *crp, int hint);
291 static  int crypto_kinvoke(struct cryptkop *krp, int flags);
292 static  void crypto_exit(void);
293 static  int crypto_init(void);
294
295 static  struct cryptostats cryptostats;
296
297 static struct cryptocap *
298 crypto_checkdriver(u_int32_t hid)
299 {
300         if (crypto_drivers == NULL)
301                 return NULL;
302         return (hid >= crypto_drivers_num ? NULL : &crypto_drivers[hid]);
303 }
304
305 /*
306  * Compare a driver's list of supported algorithms against another
307  * list; return non-zero if all algorithms are supported.
308  */
309 static int
310 driver_suitable(const struct cryptocap *cap, const struct cryptoini *cri)
311 {
312         const struct cryptoini *cr;
313
314         /* See if all the algorithms are supported. */
315         for (cr = cri; cr; cr = cr->cri_next)
316                 if (cap->cc_alg[cr->cri_alg] == 0)
317                         return 0;
318         return 1;
319 }
320
321 /*
322  * Select a driver for a new session that supports the specified
323  * algorithms and, optionally, is constrained according to the flags.
324  * The algorithm we use here is pretty stupid; just use the
325  * first driver that supports all the algorithms we need. If there
326  * are multiple drivers we choose the driver with the fewest active
327  * sessions.  We prefer hardware-backed drivers to software ones.
328  *
329  * XXX We need more smarts here (in real life too, but that's
330  * XXX another story altogether).
331  */
332 static struct cryptocap *
333 crypto_select_driver(const struct cryptoini *cri, int flags)
334 {
335         struct cryptocap *cap, *best;
336         int match, hid;
337
338         CRYPTO_DRIVER_ASSERT();
339
340         /*
341          * Look first for hardware crypto devices if permitted.
342          */
343         if (flags & CRYPTOCAP_F_HARDWARE)
344                 match = CRYPTOCAP_F_HARDWARE;
345         else
346                 match = CRYPTOCAP_F_SOFTWARE;
347         best = NULL;
348 again:
349         for (hid = 0; hid < crypto_drivers_num; hid++) {
350                 cap = &crypto_drivers[hid];
351                 /*
352                  * If it's not initialized, is in the process of
353                  * going away, or is not appropriate (hardware
354                  * or software based on match), then skip.
355                  */
356                 if (cap->cc_dev == NULL ||
357                     (cap->cc_flags & CRYPTOCAP_F_CLEANUP) ||
358                     (cap->cc_flags & match) == 0)
359                         continue;
360
361                 /* verify all the algorithms are supported. */
362                 if (driver_suitable(cap, cri)) {
363                         if (best == NULL ||
364                             cap->cc_sessions < best->cc_sessions)
365                                 best = cap;
366                 }
367         }
368         if (best != NULL)
369                 return best;
370         if (match == CRYPTOCAP_F_HARDWARE && (flags & CRYPTOCAP_F_SOFTWARE)) {
371                 /* sort of an Algol 68-style for loop */
372                 match = CRYPTOCAP_F_SOFTWARE;
373                 goto again;
374         }
375         return best;
376 }
377
378 /*
379  * Create a new session.  The crid argument specifies a crypto
380  * driver to use or constraints on a driver to select (hardware
381  * only, software only, either).  Whatever driver is selected
382  * must be capable of the requested crypto algorithms.
383  */
384 int
385 crypto_newsession(u_int64_t *sid, struct cryptoini *cri, int crid)
386 {
387         struct cryptocap *cap;
388         u_int32_t hid, lid;
389         int err;
390         unsigned long d_flags;
391
392         CRYPTO_DRIVER_LOCK();
393         if ((crid & (CRYPTOCAP_F_HARDWARE | CRYPTOCAP_F_SOFTWARE)) == 0) {
394                 /*
395                  * Use specified driver; verify it is capable.
396                  */
397                 cap = crypto_checkdriver(crid);
398                 if (cap != NULL && !driver_suitable(cap, cri))
399                         cap = NULL;
400         } else {
401                 /*
402                  * No requested driver; select based on crid flags.
403                  */
404                 cap = crypto_select_driver(cri, crid);
405                 /*
406                  * if NULL then can't do everything in one session.
407                  * XXX Fix this. We need to inject a "virtual" session
408                  * XXX layer right about here.
409                  */
410         }
411         if (cap != NULL) {
412                 /* Call the driver initialization routine. */
413                 hid = cap - crypto_drivers;
414                 lid = hid;              /* Pass the driver ID. */
415                 cap->cc_sessions++;
416                 CRYPTO_DRIVER_UNLOCK();
417                 err = CRYPTODEV_NEWSESSION(cap->cc_dev, &lid, cri);
418                 CRYPTO_DRIVER_LOCK();
419                 if (err == 0) {
420                         (*sid) = (cap->cc_flags & 0xff000000)
421                                | (hid & 0x00ffffff);
422                         (*sid) <<= 32;
423                         (*sid) |= (lid & 0xffffffff);
424                 } else
425                         cap->cc_sessions--;
426         } else
427                 err = EINVAL;
428         CRYPTO_DRIVER_UNLOCK();
429         return err;
430 }
431
432 static void
433 crypto_remove(struct cryptocap *cap)
434 {
435         CRYPTO_DRIVER_ASSERT();
436         if (cap->cc_sessions == 0 && cap->cc_koperations == 0)
437                 bzero(cap, sizeof(*cap));
438 }
439
440 /*
441  * Delete an existing session (or a reserved session on an unregistered
442  * driver).
443  */
444 int
445 crypto_freesession(u_int64_t sid)
446 {
447         struct cryptocap *cap;
448         u_int32_t hid;
449         int err = 0;
450         unsigned long d_flags;
451
452         dprintk("%s()\n", __FUNCTION__);
453         CRYPTO_DRIVER_LOCK();
454
455         if (crypto_drivers == NULL) {
456                 err = EINVAL;
457                 goto done;
458         }
459
460         /* Determine two IDs. */
461         hid = CRYPTO_SESID2HID(sid);
462
463         if (hid >= crypto_drivers_num) {
464                 dprintk("%s - INVALID DRIVER NUM %d\n", __FUNCTION__, hid);
465                 err = ENOENT;
466                 goto done;
467         }
468         cap = &crypto_drivers[hid];
469
470         if (cap->cc_dev) {
471                 CRYPTO_DRIVER_UNLOCK();
472                 /* Call the driver cleanup routine, if available, unlocked. */
473                 err = CRYPTODEV_FREESESSION(cap->cc_dev, sid);
474                 CRYPTO_DRIVER_LOCK();
475         }
476
477         if (cap->cc_sessions)
478                 cap->cc_sessions--;
479
480         if (cap->cc_flags & CRYPTOCAP_F_CLEANUP)
481                 crypto_remove(cap);
482
483 done:
484         CRYPTO_DRIVER_UNLOCK();
485         return err;
486 }
487
488 /*
489  * Return an unused driver id.  Used by drivers prior to registering
490  * support for the algorithms they handle.
491  */
492 int32_t
493 crypto_get_driverid(device_t dev, int flags)
494 {
495         struct cryptocap *newdrv;
496         int i;
497         unsigned long d_flags;
498
499         if ((flags & (CRYPTOCAP_F_HARDWARE | CRYPTOCAP_F_SOFTWARE)) == 0) {
500                 printf("%s: no flags specified when registering driver\n",
501                     device_get_nameunit(dev));
502                 return -1;
503         }
504
505         CRYPTO_DRIVER_LOCK();
506
507         for (i = 0; i < crypto_drivers_num; i++) {
508                 if (crypto_drivers[i].cc_dev == NULL &&
509                     (crypto_drivers[i].cc_flags & CRYPTOCAP_F_CLEANUP) == 0) {
510                         break;
511                 }
512         }
513
514         /* Out of entries, allocate some more. */
515         if (i == crypto_drivers_num) {
516                 /* Be careful about wrap-around. */
517                 if (2 * crypto_drivers_num <= crypto_drivers_num) {
518                         CRYPTO_DRIVER_UNLOCK();
519                         printk("crypto: driver count wraparound!\n");
520                         return -1;
521                 }
522
523                 newdrv = kmalloc(2 * crypto_drivers_num * sizeof(struct cryptocap),
524                                 GFP_KERNEL);
525                 if (newdrv == NULL) {
526                         CRYPTO_DRIVER_UNLOCK();
527                         printk("crypto: no space to expand driver table!\n");
528                         return -1;
529                 }
530
531                 memcpy(newdrv, crypto_drivers,
532                                 crypto_drivers_num * sizeof(struct cryptocap));
533                 memset(&newdrv[crypto_drivers_num], 0,
534                                 crypto_drivers_num * sizeof(struct cryptocap));
535
536                 crypto_drivers_num *= 2;
537
538                 kfree(crypto_drivers);
539                 crypto_drivers = newdrv;
540         }
541
542         /* NB: state is zero'd on free */
543         crypto_drivers[i].cc_sessions = 1;      /* Mark */
544         crypto_drivers[i].cc_dev = dev;
545         crypto_drivers[i].cc_flags = flags;
546         if (bootverbose)
547                 printf("crypto: assign %s driver id %u, flags %u\n",
548                     device_get_nameunit(dev), i, flags);
549
550         CRYPTO_DRIVER_UNLOCK();
551
552         return i;
553 }
554
555 /*
556  * Lookup a driver by name.  We match against the full device
557  * name and unit, and against just the name.  The latter gives
558  * us a simple widlcarding by device name.  On success return the
559  * driver/hardware identifier; otherwise return -1.
560  */
561 int
562 crypto_find_driver(const char *match)
563 {
564         int i, len = strlen(match);
565         unsigned long d_flags;
566
567         CRYPTO_DRIVER_LOCK();
568         for (i = 0; i < crypto_drivers_num; i++) {
569                 device_t dev = crypto_drivers[i].cc_dev;
570                 if (dev == NULL ||
571                     (crypto_drivers[i].cc_flags & CRYPTOCAP_F_CLEANUP))
572                         continue;
573                 if (strncmp(match, device_get_nameunit(dev), len) == 0 ||
574                     strncmp(match, device_get_name(dev), len) == 0)
575                         break;
576         }
577         CRYPTO_DRIVER_UNLOCK();
578         return i < crypto_drivers_num ? i : -1;
579 }
580
581 /*
582  * Return the device_t for the specified driver or NULL
583  * if the driver identifier is invalid.
584  */
585 device_t
586 crypto_find_device_byhid(int hid)
587 {
588         struct cryptocap *cap = crypto_checkdriver(hid);
589         return cap != NULL ? cap->cc_dev : NULL;
590 }
591
592 /*
593  * Return the device/driver capabilities.
594  */
595 int
596 crypto_getcaps(int hid)
597 {
598         struct cryptocap *cap = crypto_checkdriver(hid);
599         return cap != NULL ? cap->cc_flags : 0;
600 }
601
602 /*
603  * Register support for a key-related algorithm.  This routine
604  * is called once for each algorithm supported a driver.
605  */
606 int
607 crypto_kregister(u_int32_t driverid, int kalg, u_int32_t flags)
608 {
609         struct cryptocap *cap;
610         int err;
611         unsigned long d_flags;
612
613         dprintk("%s()\n", __FUNCTION__);
614         CRYPTO_DRIVER_LOCK();
615
616         cap = crypto_checkdriver(driverid);
617         if (cap != NULL &&
618             (CRK_ALGORITM_MIN <= kalg && kalg <= CRK_ALGORITHM_MAX)) {
619                 /*
620                  * XXX Do some performance testing to determine placing.
621                  * XXX We probably need an auxiliary data structure that
622                  * XXX describes relative performances.
623                  */
624
625                 cap->cc_kalg[kalg] = flags | CRYPTO_ALG_FLAG_SUPPORTED;
626                 if (bootverbose)
627                         printf("crypto: %s registers key alg %u flags %u\n"
628                                 , device_get_nameunit(cap->cc_dev)
629                                 , kalg
630                                 , flags
631                         );
632                 err = 0;
633         } else
634                 err = EINVAL;
635
636         CRYPTO_DRIVER_UNLOCK();
637         return err;
638 }
639
640 /*
641  * Register support for a non-key-related algorithm.  This routine
642  * is called once for each such algorithm supported by a driver.
643  */
644 int
645 crypto_register(u_int32_t driverid, int alg, u_int16_t maxoplen,
646     u_int32_t flags)
647 {
648         struct cryptocap *cap;
649         int err;
650         unsigned long d_flags;
651
652         dprintk("%s(id=0x%x, alg=%d, maxoplen=%d, flags=0x%x)\n", __FUNCTION__,
653                         driverid, alg, maxoplen, flags);
654
655         CRYPTO_DRIVER_LOCK();
656
657         cap = crypto_checkdriver(driverid);
658         /* NB: algorithms are in the range [1..max] */
659         if (cap != NULL &&
660             (CRYPTO_ALGORITHM_MIN <= alg && alg <= CRYPTO_ALGORITHM_MAX)) {
661                 /*
662                  * XXX Do some performance testing to determine placing.
663                  * XXX We probably need an auxiliary data structure that
664                  * XXX describes relative performances.
665                  */
666
667                 cap->cc_alg[alg] = flags | CRYPTO_ALG_FLAG_SUPPORTED;
668                 cap->cc_max_op_len[alg] = maxoplen;
669                 if (bootverbose)
670                         printf("crypto: %s registers alg %u flags %u maxoplen %u\n"
671                                 , device_get_nameunit(cap->cc_dev)
672                                 , alg
673                                 , flags
674                                 , maxoplen
675                         );
676                 cap->cc_sessions = 0;           /* Unmark */
677                 err = 0;
678         } else
679                 err = EINVAL;
680
681         CRYPTO_DRIVER_UNLOCK();
682         return err;
683 }
684
685 static void
686 driver_finis(struct cryptocap *cap)
687 {
688         u_int32_t ses, kops;
689
690         CRYPTO_DRIVER_ASSERT();
691
692         ses = cap->cc_sessions;
693         kops = cap->cc_koperations;
694         bzero(cap, sizeof(*cap));
695         if (ses != 0 || kops != 0) {
696                 /*
697                  * If there are pending sessions,
698                  * just mark as invalid.
699                  */
700                 cap->cc_flags |= CRYPTOCAP_F_CLEANUP;
701                 cap->cc_sessions = ses;
702                 cap->cc_koperations = kops;
703         }
704 }
705
706 /*
707  * Unregister a crypto driver. If there are pending sessions using it,
708  * leave enough information around so that subsequent calls using those
709  * sessions will correctly detect the driver has been unregistered and
710  * reroute requests.
711  */
712 int
713 crypto_unregister(u_int32_t driverid, int alg)
714 {
715         struct cryptocap *cap;
716         int i, err;
717         unsigned long d_flags;
718
719         dprintk("%s()\n", __FUNCTION__);
720         CRYPTO_DRIVER_LOCK();
721
722         cap = crypto_checkdriver(driverid);
723         if (cap != NULL &&
724             (CRYPTO_ALGORITHM_MIN <= alg && alg <= CRYPTO_ALGORITHM_MAX) &&
725             cap->cc_alg[alg] != 0) {
726                 cap->cc_alg[alg] = 0;
727                 cap->cc_max_op_len[alg] = 0;
728
729                 /* Was this the last algorithm ? */
730                 for (i = 1; i <= CRYPTO_ALGORITHM_MAX; i++)
731                         if (cap->cc_alg[i] != 0)
732                                 break;
733
734                 if (i == CRYPTO_ALGORITHM_MAX + 1)
735                         driver_finis(cap);
736                 err = 0;
737         } else
738                 err = EINVAL;
739         CRYPTO_DRIVER_UNLOCK();
740         return err;
741 }
742
743 /*
744  * Unregister all algorithms associated with a crypto driver.
745  * If there are pending sessions using it, leave enough information
746  * around so that subsequent calls using those sessions will
747  * correctly detect the driver has been unregistered and reroute
748  * requests.
749  */
750 int
751 crypto_unregister_all(u_int32_t driverid)
752 {
753         struct cryptocap *cap;
754         int err;
755         unsigned long d_flags;
756
757         dprintk("%s()\n", __FUNCTION__);
758         CRYPTO_DRIVER_LOCK();
759         cap = crypto_checkdriver(driverid);
760         if (cap != NULL) {
761                 driver_finis(cap);
762                 err = 0;
763         } else
764                 err = EINVAL;
765         CRYPTO_DRIVER_UNLOCK();
766
767         return err;
768 }
769
770 /*
771  * Clear blockage on a driver.  The what parameter indicates whether
772  * the driver is now ready for cryptop's and/or cryptokop's.
773  */
774 int
775 crypto_unblock(u_int32_t driverid, int what)
776 {
777         struct cryptocap *cap;
778         int err;
779         unsigned long q_flags;
780
781         CRYPTO_Q_LOCK();
782         cap = crypto_checkdriver(driverid);
783         if (cap != NULL) {
784                 if (what & CRYPTO_SYMQ) {
785                         cap->cc_qblocked = 0;
786                         cap->cc_unqblocked = 0;
787                         crypto_all_qblocked = 0;
788                 }
789                 if (what & CRYPTO_ASYMQ) {
790                         cap->cc_kqblocked = 0;
791                         cap->cc_unkqblocked = 0;
792                         crypto_all_kqblocked = 0;
793                 }
794                 if (crp_sleep)
795                         wake_up_interruptible(&cryptoproc_wait);
796                 err = 0;
797         } else
798                 err = EINVAL;
799         CRYPTO_Q_UNLOCK(); //DAVIDM should this be a driver lock
800
801         return err;
802 }
803
804 /*
805  * Add a crypto request to a queue, to be processed by the kernel thread.
806  */
807 int
808 crypto_dispatch(struct cryptop *crp)
809 {
810         struct cryptocap *cap;
811         int result = -1;
812         unsigned long q_flags;
813
814         dprintk("%s()\n", __FUNCTION__);
815
816         cryptostats.cs_ops++;
817
818         CRYPTO_Q_LOCK();
819         if (crypto_q_cnt >= crypto_q_max) {
820                 CRYPTO_Q_UNLOCK();
821                 cryptostats.cs_drops++;
822                 return ENOMEM;
823         }
824         crypto_q_cnt++;
825
826         /* make sure we are starting a fresh run on this crp. */
827         crp->crp_flags &= ~CRYPTO_F_DONE;
828         crp->crp_etype = 0;
829
830         /*
831          * Caller marked the request to be processed immediately; dispatch
832          * it directly to the driver unless the driver is currently blocked.
833          */
834         if ((crp->crp_flags & CRYPTO_F_BATCH) == 0) {
835                 int hid = CRYPTO_SESID2HID(crp->crp_sid);
836                 cap = crypto_checkdriver(hid);
837                 /* Driver cannot disappear when there is an active session. */
838                 KASSERT(cap != NULL, ("%s: Driver disappeared.", __func__));
839                 if (!cap->cc_qblocked) {
840                         crypto_all_qblocked = 0;
841                         crypto_drivers[hid].cc_unqblocked = 1;
842                         CRYPTO_Q_UNLOCK();
843                         result = crypto_invoke(cap, crp, 0);
844                         CRYPTO_Q_LOCK();
845                         if (result == ERESTART)
846                                 if (crypto_drivers[hid].cc_unqblocked)
847                                         crypto_drivers[hid].cc_qblocked = 1;
848                         crypto_drivers[hid].cc_unqblocked = 0;
849                 }
850         }
851         if (result == ERESTART) {
852                 /*
853                  * The driver ran out of resources, mark the
854                  * driver ``blocked'' for cryptop's and put
855                  * the request back in the queue.  It would
856                  * best to put the request back where we got
857                  * it but that's hard so for now we put it
858                  * at the front.  This should be ok; putting
859                  * it at the end does not work.
860                  */
861                 list_add(&crp->crp_next, &crp_q);
862                 cryptostats.cs_blocks++;
863                 result = 0;
864         } else if (result == -1) {
865                 TAILQ_INSERT_TAIL(&crp_q, crp, crp_next);
866                 result = 0;
867         }
868         if (crp_sleep)
869                 wake_up_interruptible(&cryptoproc_wait);
870         CRYPTO_Q_UNLOCK();
871         return result;
872 }
873
874 /*
875  * Add an asymetric crypto request to a queue,
876  * to be processed by the kernel thread.
877  */
878 int
879 crypto_kdispatch(struct cryptkop *krp)
880 {
881         int error;
882         unsigned long q_flags;
883
884         cryptostats.cs_kops++;
885
886         error = crypto_kinvoke(krp, krp->krp_crid);
887         if (error == ERESTART) {
888                 CRYPTO_Q_LOCK();
889                 TAILQ_INSERT_TAIL(&crp_kq, krp, krp_next);
890                 if (crp_sleep)
891                         wake_up_interruptible(&cryptoproc_wait);
892                 CRYPTO_Q_UNLOCK();
893                 error = 0;
894         }
895         return error;
896 }
897
898 /*
899  * Verify a driver is suitable for the specified operation.
900  */
901 static __inline int
902 kdriver_suitable(const struct cryptocap *cap, const struct cryptkop *krp)
903 {
904         return (cap->cc_kalg[krp->krp_op] & CRYPTO_ALG_FLAG_SUPPORTED) != 0;
905 }
906
907 /*
908  * Select a driver for an asym operation.  The driver must
909  * support the necessary algorithm.  The caller can constrain
910  * which device is selected with the flags parameter.  The
911  * algorithm we use here is pretty stupid; just use the first
912  * driver that supports the algorithms we need. If there are
913  * multiple suitable drivers we choose the driver with the
914  * fewest active operations.  We prefer hardware-backed
915  * drivers to software ones when either may be used.
916  */
917 static struct cryptocap *
918 crypto_select_kdriver(const struct cryptkop *krp, int flags)
919 {
920         struct cryptocap *cap, *best, *blocked;
921         int match, hid;
922
923         CRYPTO_DRIVER_ASSERT();
924
925         /*
926          * Look first for hardware crypto devices if permitted.
927          */
928         if (flags & CRYPTOCAP_F_HARDWARE)
929                 match = CRYPTOCAP_F_HARDWARE;
930         else
931                 match = CRYPTOCAP_F_SOFTWARE;
932         best = NULL;
933         blocked = NULL;
934 again:
935         for (hid = 0; hid < crypto_drivers_num; hid++) {
936                 cap = &crypto_drivers[hid];
937                 /*
938                  * If it's not initialized, is in the process of
939                  * going away, or is not appropriate (hardware
940                  * or software based on match), then skip.
941                  */
942                 if (cap->cc_dev == NULL ||
943                     (cap->cc_flags & CRYPTOCAP_F_CLEANUP) ||
944                     (cap->cc_flags & match) == 0)
945                         continue;
946
947                 /* verify all the algorithms are supported. */
948                 if (kdriver_suitable(cap, krp)) {
949                         if (best == NULL ||
950                             cap->cc_koperations < best->cc_koperations)
951                                 best = cap;
952                 }
953         }
954         if (best != NULL)
955                 return best;
956         if (match == CRYPTOCAP_F_HARDWARE && (flags & CRYPTOCAP_F_SOFTWARE)) {
957                 /* sort of an Algol 68-style for loop */
958                 match = CRYPTOCAP_F_SOFTWARE;
959                 goto again;
960         }
961         return best;
962 }
963
964 /*
965  * Dispatch an assymetric crypto request.
966  */
967 static int
968 crypto_kinvoke(struct cryptkop *krp, int crid)
969 {
970         struct cryptocap *cap = NULL;
971         int error;
972         unsigned long d_flags;
973
974         KASSERT(krp != NULL, ("%s: krp == NULL", __func__));
975         KASSERT(krp->krp_callback != NULL,
976             ("%s: krp->crp_callback == NULL", __func__));
977
978         CRYPTO_DRIVER_LOCK();
979         if ((crid & (CRYPTOCAP_F_HARDWARE | CRYPTOCAP_F_SOFTWARE)) == 0) {
980                 cap = crypto_checkdriver(crid);
981                 if (cap != NULL) {
982                         /*
983                          * Driver present, it must support the necessary
984                          * algorithm and, if s/w drivers are excluded,
985                          * it must be registered as hardware-backed.
986                          */
987                         if (!kdriver_suitable(cap, krp) ||
988                             (!crypto_devallowsoft &&
989                              (cap->cc_flags & CRYPTOCAP_F_HARDWARE) == 0))
990                                 cap = NULL;
991                 }
992         } else {
993                 /*
994                  * No requested driver; select based on crid flags.
995                  */
996                 if (!crypto_devallowsoft)       /* NB: disallow s/w drivers */
997                         crid &= ~CRYPTOCAP_F_SOFTWARE;
998                 cap = crypto_select_kdriver(krp, crid);
999         }
1000         if (cap != NULL && !cap->cc_kqblocked) {
1001                 krp->krp_hid = cap - crypto_drivers;
1002                 cap->cc_koperations++;
1003                 CRYPTO_DRIVER_UNLOCK();
1004                 error = CRYPTODEV_KPROCESS(cap->cc_dev, krp, 0);
1005                 CRYPTO_DRIVER_LOCK();
1006                 if (error == ERESTART) {
1007                         cap->cc_koperations--;
1008                         CRYPTO_DRIVER_UNLOCK();
1009                         return (error);
1010                 }
1011                 /* return the actual device used */
1012                 krp->krp_crid = krp->krp_hid;
1013         } else {
1014                 /*
1015                  * NB: cap is !NULL if device is blocked; in
1016                  *     that case return ERESTART so the operation
1017                  *     is resubmitted if possible.
1018                  */
1019                 error = (cap == NULL) ? ENODEV : ERESTART;
1020         }
1021         CRYPTO_DRIVER_UNLOCK();
1022
1023         if (error) {
1024                 krp->krp_status = error;
1025                 crypto_kdone(krp);
1026         }
1027         return 0;
1028 }
1029
1030
1031 /*
1032  * Dispatch a crypto request to the appropriate crypto devices.
1033  */
1034 static int
1035 crypto_invoke(struct cryptocap *cap, struct cryptop *crp, int hint)
1036 {
1037         KASSERT(crp != NULL, ("%s: crp == NULL", __func__));
1038         KASSERT(crp->crp_callback != NULL,
1039             ("%s: crp->crp_callback == NULL", __func__));
1040         KASSERT(crp->crp_desc != NULL, ("%s: crp->crp_desc == NULL", __func__));
1041
1042         dprintk("%s()\n", __FUNCTION__);
1043
1044 #ifdef CRYPTO_TIMING
1045         if (crypto_timing)
1046                 crypto_tstat(&cryptostats.cs_invoke, &crp->crp_tstamp);
1047 #endif
1048         if (cap->cc_flags & CRYPTOCAP_F_CLEANUP) {
1049                 struct cryptodesc *crd;
1050                 u_int64_t nid;
1051
1052                 /*
1053                  * Driver has unregistered; migrate the session and return
1054                  * an error to the caller so they'll resubmit the op.
1055                  *
1056                  * XXX: What if there are more already queued requests for this
1057                  *      session?
1058                  */
1059                 crypto_freesession(crp->crp_sid);
1060
1061                 for (crd = crp->crp_desc; crd->crd_next; crd = crd->crd_next)
1062                         crd->CRD_INI.cri_next = &(crd->crd_next->CRD_INI);
1063
1064                 /* XXX propagate flags from initial session? */
1065                 if (crypto_newsession(&nid, &(crp->crp_desc->CRD_INI),
1066                     CRYPTOCAP_F_HARDWARE | CRYPTOCAP_F_SOFTWARE) == 0)
1067                         crp->crp_sid = nid;
1068
1069                 crp->crp_etype = EAGAIN;
1070                 crypto_done(crp);
1071                 return 0;
1072         } else {
1073                 /*
1074                  * Invoke the driver to process the request.
1075                  */
1076                 return CRYPTODEV_PROCESS(cap->cc_dev, crp, hint);
1077         }
1078 }
1079
1080 /*
1081  * Release a set of crypto descriptors.
1082  */
1083 void
1084 crypto_freereq(struct cryptop *crp)
1085 {
1086         struct cryptodesc *crd;
1087
1088         if (crp == NULL)
1089                 return;
1090
1091 #ifdef DIAGNOSTIC
1092         {
1093                 struct cryptop *crp2;
1094                 unsigned long q_flags;
1095
1096                 CRYPTO_Q_LOCK();
1097                 TAILQ_FOREACH(crp2, &crp_q, crp_next) {
1098                         KASSERT(crp2 != crp,
1099                             ("Freeing cryptop from the crypto queue (%p).",
1100                             crp));
1101                 }
1102                 CRYPTO_Q_UNLOCK();
1103                 CRYPTO_RETQ_LOCK();
1104                 TAILQ_FOREACH(crp2, &crp_ret_q, crp_next) {
1105                         KASSERT(crp2 != crp,
1106                             ("Freeing cryptop from the return queue (%p).",
1107                             crp));
1108                 }
1109                 CRYPTO_RETQ_UNLOCK();
1110         }
1111 #endif
1112
1113         while ((crd = crp->crp_desc) != NULL) {
1114                 crp->crp_desc = crd->crd_next;
1115                 kmem_cache_free(cryptodesc_zone, crd);
1116         }
1117         kmem_cache_free(cryptop_zone, crp);
1118 }
1119
1120 /*
1121  * Acquire a set of crypto descriptors.
1122  */
1123 struct cryptop *
1124 crypto_getreq(int num)
1125 {
1126         struct cryptodesc *crd;
1127         struct cryptop *crp;
1128
1129         crp = kmem_cache_alloc(cryptop_zone, SLAB_ATOMIC);
1130         if (crp != NULL) {
1131                 memset(crp, 0, sizeof(*crp));
1132                 INIT_LIST_HEAD(&crp->crp_next);
1133                 init_waitqueue_head(&crp->crp_waitq);
1134                 while (num--) {
1135                         crd = kmem_cache_alloc(cryptodesc_zone, SLAB_ATOMIC);
1136                         if (crd == NULL) {
1137                                 crypto_freereq(crp);
1138                                 return NULL;
1139                         }
1140                         memset(crd, 0, sizeof(*crd));
1141                         crd->crd_next = crp->crp_desc;
1142                         crp->crp_desc = crd;
1143                 }
1144         }
1145         return crp;
1146 }
1147
1148 /*
1149  * Invoke the callback on behalf of the driver.
1150  */
1151 void
1152 crypto_done(struct cryptop *crp)
1153 {
1154         unsigned long q_flags;
1155
1156         dprintk("%s()\n", __FUNCTION__);
1157         if ((crp->crp_flags & CRYPTO_F_DONE) == 0) {
1158                 crp->crp_flags |= CRYPTO_F_DONE;
1159                 CRYPTO_Q_LOCK();
1160                 crypto_q_cnt--;
1161                 CRYPTO_Q_UNLOCK();
1162         } else
1163                 printk("crypto: crypto_done op already done, flags 0x%x",
1164                                 crp->crp_flags);
1165         if (crp->crp_etype != 0)
1166                 cryptostats.cs_errs++;
1167         /*
1168          * CBIMM means unconditionally do the callback immediately;
1169          * CBIFSYNC means do the callback immediately only if the
1170          * operation was done synchronously.  Both are used to avoid
1171          * doing extraneous context switches; the latter is mostly
1172          * used with the software crypto driver.
1173          */
1174         if ((crp->crp_flags & CRYPTO_F_CBIMM) ||
1175             ((crp->crp_flags & CRYPTO_F_CBIFSYNC) &&
1176              (CRYPTO_SESID2CAPS(crp->crp_sid) & CRYPTOCAP_F_SYNC))) {
1177                 /*
1178                  * Do the callback directly.  This is ok when the
1179                  * callback routine does very little (e.g. the
1180                  * /dev/crypto callback method just does a wakeup).
1181                  */
1182                 crp->crp_callback(crp);
1183         } else {
1184                 unsigned long r_flags;
1185                 /*
1186                  * Normal case; queue the callback for the thread.
1187                  */
1188                 CRYPTO_RETQ_LOCK();
1189                 if (CRYPTO_RETQ_EMPTY())
1190                         wake_up_interruptible(&cryptoretproc_wait);/* shared wait channel */
1191                 TAILQ_INSERT_TAIL(&crp_ret_q, crp, crp_next);
1192                 CRYPTO_RETQ_UNLOCK();
1193         }
1194 }
1195
1196 /*
1197  * Invoke the callback on behalf of the driver.
1198  */
1199 void
1200 crypto_kdone(struct cryptkop *krp)
1201 {
1202         struct cryptocap *cap;
1203         unsigned long d_flags;
1204
1205         if ((krp->krp_flags & CRYPTO_KF_DONE) != 0)
1206                 printk("crypto: crypto_kdone op already done, flags 0x%x",
1207                                 krp->krp_flags);
1208         krp->krp_flags |= CRYPTO_KF_DONE;
1209         if (krp->krp_status != 0)
1210                 cryptostats.cs_kerrs++;
1211
1212         CRYPTO_DRIVER_LOCK();
1213         /* XXX: What if driver is loaded in the meantime? */
1214         if (krp->krp_hid < crypto_drivers_num) {
1215                 cap = &crypto_drivers[krp->krp_hid];
1216                 cap->cc_koperations--;
1217                 KASSERT(cap->cc_koperations >= 0, ("cc_koperations < 0"));
1218                 if (cap->cc_flags & CRYPTOCAP_F_CLEANUP)
1219                         crypto_remove(cap);
1220         }
1221         CRYPTO_DRIVER_UNLOCK();
1222
1223         /*
1224          * CBIMM means unconditionally do the callback immediately;
1225          * This is used to avoid doing extraneous context switches
1226          */
1227         if ((krp->krp_flags & CRYPTO_KF_CBIMM)) {
1228                 /*
1229                  * Do the callback directly.  This is ok when the
1230                  * callback routine does very little (e.g. the
1231                  * /dev/crypto callback method just does a wakeup).
1232                  */
1233                 krp->krp_callback(krp);
1234         } else {
1235                 unsigned long r_flags;
1236                 /*
1237                  * Normal case; queue the callback for the thread.
1238                  */
1239                 CRYPTO_RETQ_LOCK();
1240                 if (CRYPTO_RETQ_EMPTY())
1241                         wake_up_interruptible(&cryptoretproc_wait);/* shared wait channel */
1242                 TAILQ_INSERT_TAIL(&crp_ret_kq, krp, krp_next);
1243                 CRYPTO_RETQ_UNLOCK();
1244         }
1245 }
1246
1247 int
1248 crypto_getfeat(int *featp)
1249 {
1250         int hid, kalg, feat = 0;
1251         unsigned long d_flags;
1252
1253         CRYPTO_DRIVER_LOCK();
1254         for (hid = 0; hid < crypto_drivers_num; hid++) {
1255                 const struct cryptocap *cap = &crypto_drivers[hid];
1256
1257                 if ((cap->cc_flags & CRYPTOCAP_F_SOFTWARE) &&
1258                     !crypto_devallowsoft) {
1259                         continue;
1260                 }
1261                 for (kalg = 0; kalg < CRK_ALGORITHM_MAX; kalg++)
1262                         if (cap->cc_kalg[kalg] & CRYPTO_ALG_FLAG_SUPPORTED)
1263                                 feat |=  1 << kalg;
1264         }
1265         CRYPTO_DRIVER_UNLOCK();
1266         *featp = feat;
1267         return (0);
1268 }
1269
1270 /*
1271  * Crypto thread, dispatches crypto requests.
1272  */
1273 static int
1274 crypto_proc(void *arg)
1275 {
1276         struct cryptop *crp, *submit;
1277         struct cryptkop *krp, *krpp;
1278         struct cryptocap *cap;
1279         u_int32_t hid;
1280         int result, hint;
1281         unsigned long q_flags;
1282         int loopcount = 0;
1283
1284         ocf_daemonize("crypto");
1285
1286         CRYPTO_Q_LOCK();
1287         for (;;) {
1288                 /*
1289                  * we need to make sure we don't get into a busy loop with nothing
1290                  * to do,  the two crypto_all_*blocked vars help us find out when
1291                  * we are all full and can do nothing on any driver or Q.  If so we
1292                  * wait for an unblock.
1293                  */
1294                 crypto_all_qblocked  = !list_empty(&crp_q);
1295
1296                 /*
1297                  * Find the first element in the queue that can be
1298                  * processed and look-ahead to see if multiple ops
1299                  * are ready for the same driver.
1300                  */
1301                 submit = NULL;
1302                 hint = 0;
1303                 list_for_each_entry(crp, &crp_q, crp_next) {
1304                         hid = CRYPTO_SESID2HID(crp->crp_sid);
1305                         cap = crypto_checkdriver(hid);
1306                         /*
1307                          * Driver cannot disappear when there is an active
1308                          * session.
1309                          */
1310                         KASSERT(cap != NULL, ("%s:%u Driver disappeared.",
1311                             __func__, __LINE__));
1312                         if (cap == NULL || cap->cc_dev == NULL) {
1313                                 /* Op needs to be migrated, process it. */
1314                                 if (submit == NULL)
1315                                         submit = crp;
1316                                 break;
1317                         }
1318                         if (!cap->cc_qblocked) {
1319                                 if (submit != NULL) {
1320                                         /*
1321                                          * We stop on finding another op,
1322                                          * regardless whether its for the same
1323                                          * driver or not.  We could keep
1324                                          * searching the queue but it might be
1325                                          * better to just use a per-driver
1326                                          * queue instead.
1327                                          */
1328                                         if (CRYPTO_SESID2HID(submit->crp_sid) == hid)
1329                                                 hint = CRYPTO_HINT_MORE;
1330                                         break;
1331                                 } else {
1332                                         submit = crp;
1333                                         if ((submit->crp_flags & CRYPTO_F_BATCH) == 0)
1334                                                 break;
1335                                         /* keep scanning for more are q'd */
1336                                 }
1337                         }
1338                 }
1339                 if (submit != NULL) {
1340                         hid = CRYPTO_SESID2HID(submit->crp_sid);
1341                         crypto_all_qblocked = 0;
1342                         list_del(&submit->crp_next);
1343                         crypto_drivers[hid].cc_unqblocked = 1;
1344                         cap = crypto_checkdriver(hid);
1345                         CRYPTO_Q_UNLOCK();
1346                         KASSERT(cap != NULL, ("%s:%u Driver disappeared.",
1347                             __func__, __LINE__));
1348                         result = crypto_invoke(cap, submit, hint);
1349                         CRYPTO_Q_LOCK();
1350                         if (result == ERESTART) {
1351                                 /*
1352                                  * The driver ran out of resources, mark the
1353                                  * driver ``blocked'' for cryptop's and put
1354                                  * the request back in the queue.  It would
1355                                  * best to put the request back where we got
1356                                  * it but that's hard so for now we put it
1357                                  * at the front.  This should be ok; putting
1358                                  * it at the end does not work.
1359                                  */
1360                                 /* XXX validate sid again? */
1361                                 list_add(&submit->crp_next, &crp_q);
1362                                 cryptostats.cs_blocks++;
1363                                 if (crypto_drivers[hid].cc_unqblocked)
1364                                         crypto_drivers[hid].cc_qblocked=0;
1365                                 crypto_drivers[hid].cc_unqblocked=0;
1366                         }
1367                         crypto_drivers[hid].cc_unqblocked = 0;
1368                 }
1369
1370                 crypto_all_kqblocked = !list_empty(&crp_kq);
1371
1372                 /* As above, but for key ops */
1373                 krp = NULL;
1374                 list_for_each_entry(krpp, &crp_kq, krp_next) {
1375                         cap = crypto_checkdriver(krpp->krp_hid);
1376                         if (cap == NULL || cap->cc_dev == NULL) {
1377                                 /*
1378                                  * Operation needs to be migrated, invalidate
1379                                  * the assigned device so it will reselect a
1380                                  * new one below.  Propagate the original
1381                                  * crid selection flags if supplied.
1382                                  */
1383                                 krp->krp_hid = krp->krp_crid &
1384                                     (CRYPTOCAP_F_SOFTWARE|CRYPTOCAP_F_HARDWARE);
1385                                 if (krp->krp_hid == 0)
1386                                         krp->krp_hid =
1387                                     CRYPTOCAP_F_SOFTWARE|CRYPTOCAP_F_HARDWARE;
1388                                 break;
1389                         }
1390                         if (!cap->cc_kqblocked) {
1391                                 krp = krpp;
1392                                 break;
1393                         }
1394                 }
1395                 if (krp != NULL) {
1396                         crypto_all_kqblocked = 0;
1397                         list_del(&krp->krp_next);
1398                         crypto_drivers[krp->krp_hid].cc_kqblocked = 1;
1399                         CRYPTO_Q_UNLOCK();
1400                         result = crypto_kinvoke(krp, krp->krp_hid);
1401                         CRYPTO_Q_LOCK();
1402                         if (result == ERESTART) {
1403                                 /*
1404                                  * The driver ran out of resources, mark the
1405                                  * driver ``blocked'' for cryptkop's and put
1406                                  * the request back in the queue.  It would
1407                                  * best to put the request back where we got
1408                                  * it but that's hard so for now we put it
1409                                  * at the front.  This should be ok; putting
1410                                  * it at the end does not work.
1411                                  */
1412                                 /* XXX validate sid again? */
1413                                 list_add(&krp->krp_next, &crp_kq);
1414                                 cryptostats.cs_kblocks++;
1415                         } else
1416                                 crypto_drivers[krp->krp_hid].cc_kqblocked = 0;
1417                 }
1418
1419                 if (submit == NULL && krp == NULL) {
1420                         /*
1421                          * Nothing more to be processed.  Sleep until we're
1422                          * woken because there are more ops to process.
1423                          * This happens either by submission or by a driver
1424                          * becoming unblocked and notifying us through
1425                          * crypto_unblock.  Note that when we wakeup we
1426                          * start processing each queue again from the
1427                          * front. It's not clear that it's important to
1428                          * preserve this ordering since ops may finish
1429                          * out of order if dispatched to different devices
1430                          * and some become blocked while others do not.
1431                          */
1432                         dprintk("%s - sleeping (qe=%d qb=%d kqe=%d kqb=%d)\n",
1433                                         __FUNCTION__,
1434                                         list_empty(&crp_q), crypto_all_qblocked,
1435                                         list_empty(&crp_kq), crypto_all_kqblocked);
1436                         loopcount = 0;
1437                         CRYPTO_Q_UNLOCK();
1438                         crp_sleep = 1;
1439                         wait_event_interruptible(cryptoproc_wait,
1440                                         !(list_empty(&crp_q) || crypto_all_qblocked) ||
1441                                         !(list_empty(&crp_kq) || crypto_all_kqblocked) ||
1442                                         cryptoproc == (pid_t) -1);
1443                         crp_sleep = 0;
1444                         if (signal_pending (current)) {
1445 #if LINUX_VERSION_CODE < KERNEL_VERSION(2,6,0)
1446                                 spin_lock_irq(&current->sigmask_lock);
1447 #endif
1448                                 flush_signals(current);
1449 #if LINUX_VERSION_CODE < KERNEL_VERSION(2,6,0)
1450                                 spin_unlock_irq(&current->sigmask_lock);
1451 #endif
1452                         }
1453                         CRYPTO_Q_LOCK();
1454                         dprintk("%s - awake\n", __FUNCTION__);
1455                         if (cryptoproc == (pid_t) -1)
1456                                 break;
1457                         cryptostats.cs_intrs++;
1458                 } else if (loopcount > crypto_max_loopcount) {
1459                         /*
1460                          * Give other processes a chance to run if we've 
1461                          * been using the CPU exclusively for a while.
1462                          */
1463                         loopcount = 0;
1464                         schedule();
1465                 }
1466                 loopcount++;
1467         }
1468         CRYPTO_Q_UNLOCK();
1469         complete_and_exit(&cryptoproc_exited, 0);
1470 }
1471
1472 /*
1473  * Crypto returns thread, does callbacks for processed crypto requests.
1474  * Callbacks are done here, rather than in the crypto drivers, because
1475  * callbacks typically are expensive and would slow interrupt handling.
1476  */
1477 static int
1478 crypto_ret_proc(void *arg)
1479 {
1480         struct cryptop *crpt;
1481         struct cryptkop *krpt;
1482         unsigned long  r_flags;
1483
1484         ocf_daemonize("crypto_ret");
1485
1486         CRYPTO_RETQ_LOCK();
1487         for (;;) {
1488                 /* Harvest return q's for completed ops */
1489                 crpt = NULL;
1490                 if (!list_empty(&crp_ret_q))
1491                         crpt = list_entry(crp_ret_q.next, typeof(*crpt), crp_next);
1492                 if (crpt != NULL)
1493                         list_del(&crpt->crp_next);
1494
1495                 krpt = NULL;
1496                 if (!list_empty(&crp_ret_kq))
1497                         krpt = list_entry(crp_ret_kq.next, typeof(*krpt), krp_next);
1498                 if (krpt != NULL)
1499                         list_del(&krpt->krp_next);
1500
1501                 if (crpt != NULL || krpt != NULL) {
1502                         CRYPTO_RETQ_UNLOCK();
1503                         /*
1504                          * Run callbacks unlocked.
1505                          */
1506                         if (crpt != NULL)
1507                                 crpt->crp_callback(crpt);
1508                         if (krpt != NULL)
1509                                 krpt->krp_callback(krpt);
1510                         CRYPTO_RETQ_LOCK();
1511                 } else {
1512                         /*
1513                          * Nothing more to be processed.  Sleep until we're
1514                          * woken because there are more returns to process.
1515                          */
1516                         dprintk("%s - sleeping\n", __FUNCTION__);
1517                         CRYPTO_RETQ_UNLOCK();
1518                         wait_event_interruptible(cryptoretproc_wait,
1519                                         cryptoretproc == (pid_t) -1 ||
1520                                         !list_empty(&crp_ret_q) ||
1521                                         !list_empty(&crp_ret_kq));
1522                         if (signal_pending (current)) {
1523 #if LINUX_VERSION_CODE < KERNEL_VERSION(2,6,0)
1524                                 spin_lock_irq(&current->sigmask_lock);
1525 #endif
1526                                 flush_signals(current);
1527 #if LINUX_VERSION_CODE < KERNEL_VERSION(2,6,0)
1528                                 spin_unlock_irq(&current->sigmask_lock);
1529 #endif
1530                         }
1531                         CRYPTO_RETQ_LOCK();
1532                         dprintk("%s - awake\n", __FUNCTION__);
1533                         if (cryptoretproc == (pid_t) -1) {
1534                                 dprintk("%s - EXITING!\n", __FUNCTION__);
1535                                 break;
1536                         }
1537                         cryptostats.cs_rets++;
1538                 }
1539         }
1540         CRYPTO_RETQ_UNLOCK();
1541         complete_and_exit(&cryptoretproc_exited, 0);
1542 }
1543
1544
1545 #if 0 /* should put this into /proc or something */
1546 static void
1547 db_show_drivers(void)
1548 {
1549         int hid;
1550
1551         db_printf("%12s %4s %4s %8s %2s %2s\n"
1552                 , "Device"
1553                 , "Ses"
1554                 , "Kops"
1555                 , "Flags"
1556                 , "QB"
1557                 , "KB"
1558         );
1559         for (hid = 0; hid < crypto_drivers_num; hid++) {
1560                 const struct cryptocap *cap = &crypto_drivers[hid];
1561                 if (cap->cc_dev == NULL)
1562                         continue;
1563                 db_printf("%-12s %4u %4u %08x %2u %2u\n"
1564                     , device_get_nameunit(cap->cc_dev)
1565                     , cap->cc_sessions
1566                     , cap->cc_koperations
1567                     , cap->cc_flags
1568                     , cap->cc_qblocked
1569                     , cap->cc_kqblocked
1570                 );
1571         }
1572 }
1573
1574 DB_SHOW_COMMAND(crypto, db_show_crypto)
1575 {
1576         struct cryptop *crp;
1577
1578         db_show_drivers();
1579         db_printf("\n");
1580
1581         db_printf("%4s %8s %4s %4s %4s %4s %8s %8s\n",
1582             "HID", "Caps", "Ilen", "Olen", "Etype", "Flags",
1583             "Desc", "Callback");
1584         TAILQ_FOREACH(crp, &crp_q, crp_next) {
1585                 db_printf("%4u %08x %4u %4u %4u %04x %8p %8p\n"
1586                     , (int) CRYPTO_SESID2HID(crp->crp_sid)
1587                     , (int) CRYPTO_SESID2CAPS(crp->crp_sid)
1588                     , crp->crp_ilen, crp->crp_olen
1589                     , crp->crp_etype
1590                     , crp->crp_flags
1591                     , crp->crp_desc
1592                     , crp->crp_callback
1593                 );
1594         }
1595         if (!TAILQ_EMPTY(&crp_ret_q)) {
1596                 db_printf("\n%4s %4s %4s %8s\n",
1597                     "HID", "Etype", "Flags", "Callback");
1598                 TAILQ_FOREACH(crp, &crp_ret_q, crp_next) {
1599                         db_printf("%4u %4u %04x %8p\n"
1600                             , (int) CRYPTO_SESID2HID(crp->crp_sid)
1601                             , crp->crp_etype
1602                             , crp->crp_flags
1603                             , crp->crp_callback
1604                         );
1605                 }
1606         }
1607 }
1608
1609 DB_SHOW_COMMAND(kcrypto, db_show_kcrypto)
1610 {
1611         struct cryptkop *krp;
1612
1613         db_show_drivers();
1614         db_printf("\n");
1615
1616         db_printf("%4s %5s %4s %4s %8s %4s %8s\n",
1617             "Op", "Status", "#IP", "#OP", "CRID", "HID", "Callback");
1618         TAILQ_FOREACH(krp, &crp_kq, krp_next) {
1619                 db_printf("%4u %5u %4u %4u %08x %4u %8p\n"
1620                     , krp->krp_op
1621                     , krp->krp_status
1622                     , krp->krp_iparams, krp->krp_oparams
1623                     , krp->krp_crid, krp->krp_hid
1624                     , krp->krp_callback
1625                 );
1626         }
1627         if (!TAILQ_EMPTY(&crp_ret_q)) {
1628                 db_printf("%4s %5s %8s %4s %8s\n",
1629                     "Op", "Status", "CRID", "HID", "Callback");
1630                 TAILQ_FOREACH(krp, &crp_ret_kq, krp_next) {
1631                         db_printf("%4u %5u %08x %4u %8p\n"
1632                             , krp->krp_op
1633                             , krp->krp_status
1634                             , krp->krp_crid, krp->krp_hid
1635                             , krp->krp_callback
1636                         );
1637                 }
1638         }
1639 }
1640 #endif
1641
1642
1643 static int
1644 crypto_init(void)
1645 {
1646         int error;
1647
1648         dprintk("%s(%p)\n", __FUNCTION__, (void *) crypto_init);
1649
1650         if (crypto_initted)
1651                 return 0;
1652         crypto_initted = 1;
1653
1654         spin_lock_init(&crypto_drivers_lock);
1655         spin_lock_init(&crypto_q_lock);
1656         spin_lock_init(&crypto_ret_q_lock);
1657
1658         cryptop_zone = kmem_cache_create("cryptop", sizeof(struct cryptop),
1659                                        0, SLAB_HWCACHE_ALIGN, NULL
1660 #if LINUX_VERSION_CODE < KERNEL_VERSION(2,6,23)
1661                                        , NULL
1662 #endif
1663                                         );
1664
1665         cryptodesc_zone = kmem_cache_create("cryptodesc", sizeof(struct cryptodesc),
1666                                        0, SLAB_HWCACHE_ALIGN, NULL
1667 #if LINUX_VERSION_CODE < KERNEL_VERSION(2,6,23)
1668                                        , NULL
1669 #endif
1670                                         );
1671
1672         if (cryptodesc_zone == NULL || cryptop_zone == NULL) {
1673                 printk("crypto: crypto_init cannot setup crypto zones\n");
1674                 error = ENOMEM;
1675                 goto bad;
1676         }
1677
1678         crypto_drivers_num = CRYPTO_DRIVERS_INITIAL;
1679         crypto_drivers = kmalloc(crypto_drivers_num * sizeof(struct cryptocap),
1680                         GFP_KERNEL);
1681         if (crypto_drivers == NULL) {
1682                 printk("crypto: crypto_init cannot setup crypto drivers\n");
1683                 error = ENOMEM;
1684                 goto bad;
1685         }
1686
1687         memset(crypto_drivers, 0, crypto_drivers_num * sizeof(struct cryptocap));
1688
1689         init_completion(&cryptoproc_exited);
1690         init_completion(&cryptoretproc_exited);
1691
1692         cryptoproc = 0; /* to avoid race condition where proc runs first */
1693         cryptoproc = kernel_thread(crypto_proc, NULL, CLONE_FS|CLONE_FILES);
1694         if (cryptoproc < 0) {
1695                 error = cryptoproc;
1696                 printk("crypto: crypto_init cannot start crypto thread; error %d",
1697                         error);
1698                 goto bad;
1699         }
1700
1701         cryptoretproc = 0; /* to avoid race condition where proc runs first */
1702         cryptoretproc = kernel_thread(crypto_ret_proc, NULL, CLONE_FS|CLONE_FILES);
1703         if (cryptoretproc < 0) {
1704                 error = cryptoretproc;
1705                 printk("crypto: crypto_init cannot start cryptoret thread; error %d",
1706                                 error);
1707                 goto bad;
1708         }
1709
1710         return 0;
1711 bad:
1712         crypto_exit();
1713         return error;
1714 }
1715
1716
1717 static void
1718 crypto_exit(void)
1719 {
1720         pid_t p;
1721         unsigned long d_flags;
1722
1723         dprintk("%s()\n", __FUNCTION__);
1724
1725         /*
1726          * Terminate any crypto threads.
1727          */
1728
1729         CRYPTO_DRIVER_LOCK();
1730         p = cryptoproc;
1731         cryptoproc = (pid_t) -1;
1732         kill_proc(p, SIGTERM, 1);
1733         wake_up_interruptible(&cryptoproc_wait);
1734         CRYPTO_DRIVER_UNLOCK();
1735
1736         wait_for_completion(&cryptoproc_exited);
1737
1738         CRYPTO_DRIVER_LOCK();
1739         p = cryptoretproc;
1740         cryptoretproc = (pid_t) -1;
1741         kill_proc(p, SIGTERM, 1);
1742         wake_up_interruptible(&cryptoretproc_wait);
1743         CRYPTO_DRIVER_UNLOCK();
1744
1745         wait_for_completion(&cryptoretproc_exited);
1746
1747         /* XXX flush queues??? */
1748
1749         /* 
1750          * Reclaim dynamically allocated resources.
1751          */
1752         if (crypto_drivers != NULL)
1753                 kfree(crypto_drivers);
1754
1755         if (cryptodesc_zone != NULL)
1756                 kmem_cache_destroy(cryptodesc_zone);
1757         if (cryptop_zone != NULL)
1758                 kmem_cache_destroy(cryptop_zone);
1759 }
1760
1761
1762 EXPORT_SYMBOL(crypto_newsession);
1763 EXPORT_SYMBOL(crypto_freesession);
1764 EXPORT_SYMBOL(crypto_get_driverid);
1765 EXPORT_SYMBOL(crypto_kregister);
1766 EXPORT_SYMBOL(crypto_register);
1767 EXPORT_SYMBOL(crypto_unregister);
1768 EXPORT_SYMBOL(crypto_unregister_all);
1769 EXPORT_SYMBOL(crypto_unblock);
1770 EXPORT_SYMBOL(crypto_dispatch);
1771 EXPORT_SYMBOL(crypto_kdispatch);
1772 EXPORT_SYMBOL(crypto_freereq);
1773 EXPORT_SYMBOL(crypto_getreq);
1774 EXPORT_SYMBOL(crypto_done);
1775 EXPORT_SYMBOL(crypto_kdone);
1776 EXPORT_SYMBOL(crypto_getfeat);
1777 EXPORT_SYMBOL(crypto_userasymcrypto);
1778 EXPORT_SYMBOL(crypto_getcaps);
1779 EXPORT_SYMBOL(crypto_find_driver);
1780 EXPORT_SYMBOL(crypto_find_device_byhid);
1781
1782 module_init(crypto_init);
1783 module_exit(crypto_exit);
1784
1785 MODULE_LICENSE("BSD");
1786 MODULE_AUTHOR("David McCullough <david_mccullough@mcafee.com>");
1787 MODULE_DESCRIPTION("OCF (OpenBSD Cryptographic Framework)");