9735f0ce93baf5b7f0f42162406e1802c3a029f1
[15.05/openwrt.git] / target / linux / generic / files / crypto / ocf / crypto.c
1 /*-
2  * Linux port done by David McCullough <david_mccullough@mcafee.com>
3  * Copyright (C) 2006-2010 David McCullough
4  * Copyright (C) 2004-2005 Intel Corporation.
5  * The license and original author are listed below.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * Copyright (c) 2002-2006 Sam Leffler.  All rights reserved.
9  *
10  * modification, are permitted provided that the following conditions
11  * are met:
12  * 1. Redistributions of source code must retain the above copyright
13  *    notice, this list of conditions and the following disclaimer.
14  * 2. Redistributions in binary form must reproduce the above copyright
15  *    notice, this list of conditions and the following disclaimer in the
16  *    documentation and/or other materials provided with the distribution.
17  *
18  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
19  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
20  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
21  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
22  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
23  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
24  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
25  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
26  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
27  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
28  */
29
30 #if 0
31 #include <sys/cdefs.h>
32 __FBSDID("$FreeBSD: src/sys/opencrypto/crypto.c,v 1.27 2007/03/21 03:42:51 sam Exp $");
33 #endif
34
35 /*
36  * Cryptographic Subsystem.
37  *
38  * This code is derived from the Openbsd Cryptographic Framework (OCF)
39  * that has the copyright shown below.  Very little of the original
40  * code remains.
41  */
42 /*-
43  * The author of this code is Angelos D. Keromytis (angelos@cis.upenn.edu)
44  *
45  * This code was written by Angelos D. Keromytis in Athens, Greece, in
46  * February 2000. Network Security Technologies Inc. (NSTI) kindly
47  * supported the development of this code.
48  *
49  * Copyright (c) 2000, 2001 Angelos D. Keromytis
50  *
51  * Permission to use, copy, and modify this software with or without fee
52  * is hereby granted, provided that this entire notice is included in
53  * all source code copies of any software which is or includes a copy or
54  * modification of this software.
55  *
56  * THIS SOFTWARE IS BEING PROVIDED "AS IS", WITHOUT ANY EXPRESS OR
57  * IMPLIED WARRANTY. IN PARTICULAR, NONE OF THE AUTHORS MAKES ANY
58  * REPRESENTATION OR WARRANTY OF ANY KIND CONCERNING THE
59  * MERCHANTABILITY OF THIS SOFTWARE OR ITS FITNESS FOR ANY PARTICULAR
60  * PURPOSE.
61  *
62 __FBSDID("$FreeBSD: src/sys/opencrypto/crypto.c,v 1.16 2005/01/07 02:29:16 imp Exp $");
63  */
64
65
66 #ifndef AUTOCONF_INCLUDED
67 #include <linux/config.h>
68 #endif
69 #include <linux/module.h>
70 #include <linux/init.h>
71 #include <linux/list.h>
72 #include <linux/slab.h>
73 #include <linux/wait.h>
74 #include <linux/sched.h>
75 #include <linux/spinlock.h>
76 #include <linux/version.h>
77 #include <cryptodev.h>
78
79 /*
80  * keep track of whether or not we have been initialised, a big
81  * issue if we are linked into the kernel and a driver gets started before
82  * us
83  */
84 static int crypto_initted = 0;
85
86 /*
87  * Crypto drivers register themselves by allocating a slot in the
88  * crypto_drivers table with crypto_get_driverid() and then registering
89  * each algorithm they support with crypto_register() and crypto_kregister().
90  */
91
92 /*
93  * lock on driver table
94  * we track its state as spin_is_locked does not do anything on non-SMP boxes
95  */
96 static spinlock_t       crypto_drivers_lock;
97 static int                      crypto_drivers_locked;          /* for non-SMP boxes */
98
99 #define CRYPTO_DRIVER_LOCK() \
100                         ({ \
101                                 spin_lock_irqsave(&crypto_drivers_lock, d_flags); \
102                                 crypto_drivers_locked = 1; \
103                                 dprintk("%s,%d: DRIVER_LOCK()\n", __FILE__, __LINE__); \
104                          })
105 #define CRYPTO_DRIVER_UNLOCK() \
106                         ({ \
107                                 dprintk("%s,%d: DRIVER_UNLOCK()\n", __FILE__, __LINE__); \
108                                 crypto_drivers_locked = 0; \
109                                 spin_unlock_irqrestore(&crypto_drivers_lock, d_flags); \
110                          })
111 #define CRYPTO_DRIVER_ASSERT() \
112                         ({ \
113                                 if (!crypto_drivers_locked) { \
114                                         dprintk("%s,%d: DRIVER_ASSERT!\n", __FILE__, __LINE__); \
115                                 } \
116                          })
117
118 /*
119  * Crypto device/driver capabilities structure.
120  *
121  * Synchronization:
122  * (d) - protected by CRYPTO_DRIVER_LOCK()
123  * (q) - protected by CRYPTO_Q_LOCK()
124  * Not tagged fields are read-only.
125  */
126 struct cryptocap {
127         device_t        cc_dev;                 /* (d) device/driver */
128         u_int32_t       cc_sessions;            /* (d) # of sessions */
129         u_int32_t       cc_koperations;         /* (d) # os asym operations */
130         /*
131          * Largest possible operator length (in bits) for each type of
132          * encryption algorithm. XXX not used
133          */
134         u_int16_t       cc_max_op_len[CRYPTO_ALGORITHM_MAX + 1];
135         u_int8_t        cc_alg[CRYPTO_ALGORITHM_MAX + 1];
136         u_int8_t        cc_kalg[CRK_ALGORITHM_MAX + 1];
137
138         int             cc_flags;               /* (d) flags */
139 #define CRYPTOCAP_F_CLEANUP     0x80000000      /* needs resource cleanup */
140         int             cc_qblocked;            /* (q) symmetric q blocked */
141         int             cc_kqblocked;           /* (q) asymmetric q blocked */
142
143         int             cc_unqblocked;          /* (q) symmetric q blocked */
144         int             cc_unkqblocked;         /* (q) asymmetric q blocked */
145 };
146 static struct cryptocap *crypto_drivers = NULL;
147 static int crypto_drivers_num = 0;
148
149 /*
150  * There are two queues for crypto requests; one for symmetric (e.g.
151  * cipher) operations and one for asymmetric (e.g. MOD)operations.
152  * A single mutex is used to lock access to both queues.  We could
153  * have one per-queue but having one simplifies handling of block/unblock
154  * operations.
155  */
156 static  int crp_sleep = 0;
157 static LIST_HEAD(crp_q);                /* request queues */
158 static LIST_HEAD(crp_kq);
159
160 static spinlock_t crypto_q_lock;
161
162 int crypto_all_qblocked = 0;  /* protect with Q_LOCK */
163 module_param(crypto_all_qblocked, int, 0444);
164 MODULE_PARM_DESC(crypto_all_qblocked, "Are all crypto queues blocked");
165
166 int crypto_all_kqblocked = 0; /* protect with Q_LOCK */
167 module_param(crypto_all_kqblocked, int, 0444);
168 MODULE_PARM_DESC(crypto_all_kqblocked, "Are all asym crypto queues blocked");
169
170 #define CRYPTO_Q_LOCK() \
171                         ({ \
172                                 spin_lock_irqsave(&crypto_q_lock, q_flags); \
173                                 dprintk("%s,%d: Q_LOCK()\n", __FILE__, __LINE__); \
174                          })
175 #define CRYPTO_Q_UNLOCK() \
176                         ({ \
177                                 dprintk("%s,%d: Q_UNLOCK()\n", __FILE__, __LINE__); \
178                                 spin_unlock_irqrestore(&crypto_q_lock, q_flags); \
179                          })
180
181 /*
182  * There are two queues for processing completed crypto requests; one
183  * for the symmetric and one for the asymmetric ops.  We only need one
184  * but have two to avoid type futzing (cryptop vs. cryptkop).  A single
185  * mutex is used to lock access to both queues.  Note that this lock
186  * must be separate from the lock on request queues to insure driver
187  * callbacks don't generate lock order reversals.
188  */
189 static LIST_HEAD(crp_ret_q);            /* callback queues */
190 static LIST_HEAD(crp_ret_kq);
191
192 static spinlock_t crypto_ret_q_lock;
193 #define CRYPTO_RETQ_LOCK() \
194                         ({ \
195                                 spin_lock_irqsave(&crypto_ret_q_lock, r_flags); \
196                                 dprintk("%s,%d: RETQ_LOCK\n", __FILE__, __LINE__); \
197                          })
198 #define CRYPTO_RETQ_UNLOCK() \
199                         ({ \
200                                 dprintk("%s,%d: RETQ_UNLOCK\n", __FILE__, __LINE__); \
201                                 spin_unlock_irqrestore(&crypto_ret_q_lock, r_flags); \
202                          })
203 #define CRYPTO_RETQ_EMPTY()     (list_empty(&crp_ret_q) && list_empty(&crp_ret_kq))
204
205 #if LINUX_VERSION_CODE < KERNEL_VERSION(2,6,20)
206 static kmem_cache_t *cryptop_zone;
207 static kmem_cache_t *cryptodesc_zone;
208 #else
209 static struct kmem_cache *cryptop_zone;
210 static struct kmem_cache *cryptodesc_zone;
211 #endif
212
213 #if LINUX_VERSION_CODE >= KERNEL_VERSION(2,6,27)
214 #include <linux/sched.h>
215 #define kill_proc(p,s,v)        send_sig(s,find_task_by_vpid(p),0)
216 #endif
217
218 #define debug crypto_debug
219 int crypto_debug = 0;
220 module_param(crypto_debug, int, 0644);
221 MODULE_PARM_DESC(crypto_debug, "Enable debug");
222 EXPORT_SYMBOL(crypto_debug);
223
224 /*
225  * Maximum number of outstanding crypto requests before we start
226  * failing requests.  We need this to prevent DOS when too many
227  * requests are arriving for us to keep up.  Otherwise we will
228  * run the system out of memory.  Since crypto is slow,  we are
229  * usually the bottleneck that needs to say, enough is enough.
230  *
231  * We cannot print errors when this condition occurs,  we are already too
232  * slow,  printing anything will just kill us
233  */
234
235 static int crypto_q_cnt = 0;
236 module_param(crypto_q_cnt, int, 0444);
237 MODULE_PARM_DESC(crypto_q_cnt,
238                 "Current number of outstanding crypto requests");
239
240 static int crypto_q_max = 1000;
241 module_param(crypto_q_max, int, 0644);
242 MODULE_PARM_DESC(crypto_q_max,
243                 "Maximum number of outstanding crypto requests");
244
245 #define bootverbose crypto_verbose
246 static int crypto_verbose = 0;
247 module_param(crypto_verbose, int, 0644);
248 MODULE_PARM_DESC(crypto_verbose,
249                 "Enable verbose crypto startup");
250
251 int     crypto_usercrypto = 1;  /* userland may do crypto reqs */
252 module_param(crypto_usercrypto, int, 0644);
253 MODULE_PARM_DESC(crypto_usercrypto,
254            "Enable/disable user-mode access to crypto support");
255
256 int     crypto_userasymcrypto = 1;      /* userland may do asym crypto reqs */
257 module_param(crypto_userasymcrypto, int, 0644);
258 MODULE_PARM_DESC(crypto_userasymcrypto,
259            "Enable/disable user-mode access to asymmetric crypto support");
260
261 int     crypto_devallowsoft = 0;        /* only use hardware crypto */
262 module_param(crypto_devallowsoft, int, 0644);
263 MODULE_PARM_DESC(crypto_devallowsoft,
264            "Enable/disable use of software crypto support");
265
266 /*
267  * This parameter controls the maximum number of crypto operations to 
268  * do consecutively in the crypto kernel thread before scheduling to allow 
269  * other processes to run. Without it, it is possible to get into a 
270  * situation where the crypto thread never allows any other processes to run.
271  * Default to 1000 which should be less than one second.
272  */
273 static int crypto_max_loopcount = 1000;
274 module_param(crypto_max_loopcount, int, 0644);
275 MODULE_PARM_DESC(crypto_max_loopcount,
276            "Maximum number of crypto ops to do before yielding to other processes");
277
278 static pid_t    cryptoproc = (pid_t) -1;
279 static struct   completion cryptoproc_exited;
280 static DECLARE_WAIT_QUEUE_HEAD(cryptoproc_wait);
281 static pid_t    cryptoretproc = (pid_t) -1;
282 static struct   completion cryptoretproc_exited;
283 static DECLARE_WAIT_QUEUE_HEAD(cryptoretproc_wait);
284
285 static  int crypto_proc(void *arg);
286 static  int crypto_ret_proc(void *arg);
287 static  int crypto_invoke(struct cryptocap *cap, struct cryptop *crp, int hint);
288 static  int crypto_kinvoke(struct cryptkop *krp, int flags);
289 static  void crypto_exit(void);
290 static  int crypto_init(void);
291
292 static  struct cryptostats cryptostats;
293
294 static struct cryptocap *
295 crypto_checkdriver(u_int32_t hid)
296 {
297         if (crypto_drivers == NULL)
298                 return NULL;
299         return (hid >= crypto_drivers_num ? NULL : &crypto_drivers[hid]);
300 }
301
302 /*
303  * Compare a driver's list of supported algorithms against another
304  * list; return non-zero if all algorithms are supported.
305  */
306 static int
307 driver_suitable(const struct cryptocap *cap, const struct cryptoini *cri)
308 {
309         const struct cryptoini *cr;
310
311         /* See if all the algorithms are supported. */
312         for (cr = cri; cr; cr = cr->cri_next)
313                 if (cap->cc_alg[cr->cri_alg] == 0)
314                         return 0;
315         return 1;
316 }
317
318 /*
319  * Select a driver for a new session that supports the specified
320  * algorithms and, optionally, is constrained according to the flags.
321  * The algorithm we use here is pretty stupid; just use the
322  * first driver that supports all the algorithms we need. If there
323  * are multiple drivers we choose the driver with the fewest active
324  * sessions.  We prefer hardware-backed drivers to software ones.
325  *
326  * XXX We need more smarts here (in real life too, but that's
327  * XXX another story altogether).
328  */
329 static struct cryptocap *
330 crypto_select_driver(const struct cryptoini *cri, int flags)
331 {
332         struct cryptocap *cap, *best;
333         int match, hid;
334
335         CRYPTO_DRIVER_ASSERT();
336
337         /*
338          * Look first for hardware crypto devices if permitted.
339          */
340         if (flags & CRYPTOCAP_F_HARDWARE)
341                 match = CRYPTOCAP_F_HARDWARE;
342         else
343                 match = CRYPTOCAP_F_SOFTWARE;
344         best = NULL;
345 again:
346         for (hid = 0; hid < crypto_drivers_num; hid++) {
347                 cap = &crypto_drivers[hid];
348                 /*
349                  * If it's not initialized, is in the process of
350                  * going away, or is not appropriate (hardware
351                  * or software based on match), then skip.
352                  */
353                 if (cap->cc_dev == NULL ||
354                     (cap->cc_flags & CRYPTOCAP_F_CLEANUP) ||
355                     (cap->cc_flags & match) == 0)
356                         continue;
357
358                 /* verify all the algorithms are supported. */
359                 if (driver_suitable(cap, cri)) {
360                         if (best == NULL ||
361                             cap->cc_sessions < best->cc_sessions)
362                                 best = cap;
363                 }
364         }
365         if (best != NULL)
366                 return best;
367         if (match == CRYPTOCAP_F_HARDWARE && (flags & CRYPTOCAP_F_SOFTWARE)) {
368                 /* sort of an Algol 68-style for loop */
369                 match = CRYPTOCAP_F_SOFTWARE;
370                 goto again;
371         }
372         return best;
373 }
374
375 /*
376  * Create a new session.  The crid argument specifies a crypto
377  * driver to use or constraints on a driver to select (hardware
378  * only, software only, either).  Whatever driver is selected
379  * must be capable of the requested crypto algorithms.
380  */
381 int
382 crypto_newsession(u_int64_t *sid, struct cryptoini *cri, int crid)
383 {
384         struct cryptocap *cap;
385         u_int32_t hid, lid;
386         int err;
387         unsigned long d_flags;
388
389         CRYPTO_DRIVER_LOCK();
390         if ((crid & (CRYPTOCAP_F_HARDWARE | CRYPTOCAP_F_SOFTWARE)) == 0) {
391                 /*
392                  * Use specified driver; verify it is capable.
393                  */
394                 cap = crypto_checkdriver(crid);
395                 if (cap != NULL && !driver_suitable(cap, cri))
396                         cap = NULL;
397         } else {
398                 /*
399                  * No requested driver; select based on crid flags.
400                  */
401                 cap = crypto_select_driver(cri, crid);
402                 /*
403                  * if NULL then can't do everything in one session.
404                  * XXX Fix this. We need to inject a "virtual" session
405                  * XXX layer right about here.
406                  */
407         }
408         if (cap != NULL) {
409                 /* Call the driver initialization routine. */
410                 hid = cap - crypto_drivers;
411                 lid = hid;              /* Pass the driver ID. */
412                 cap->cc_sessions++;
413                 CRYPTO_DRIVER_UNLOCK();
414                 err = CRYPTODEV_NEWSESSION(cap->cc_dev, &lid, cri);
415                 CRYPTO_DRIVER_LOCK();
416                 if (err == 0) {
417                         (*sid) = (cap->cc_flags & 0xff000000)
418                                | (hid & 0x00ffffff);
419                         (*sid) <<= 32;
420                         (*sid) |= (lid & 0xffffffff);
421                 } else
422                         cap->cc_sessions--;
423         } else
424                 err = EINVAL;
425         CRYPTO_DRIVER_UNLOCK();
426         return err;
427 }
428
429 static void
430 crypto_remove(struct cryptocap *cap)
431 {
432         CRYPTO_DRIVER_ASSERT();
433         if (cap->cc_sessions == 0 && cap->cc_koperations == 0)
434                 bzero(cap, sizeof(*cap));
435 }
436
437 /*
438  * Delete an existing session (or a reserved session on an unregistered
439  * driver).
440  */
441 int
442 crypto_freesession(u_int64_t sid)
443 {
444         struct cryptocap *cap;
445         u_int32_t hid;
446         int err = 0;
447         unsigned long d_flags;
448
449         dprintk("%s()\n", __FUNCTION__);
450         CRYPTO_DRIVER_LOCK();
451
452         if (crypto_drivers == NULL) {
453                 err = EINVAL;
454                 goto done;
455         }
456
457         /* Determine two IDs. */
458         hid = CRYPTO_SESID2HID(sid);
459
460         if (hid >= crypto_drivers_num) {
461                 dprintk("%s - INVALID DRIVER NUM %d\n", __FUNCTION__, hid);
462                 err = ENOENT;
463                 goto done;
464         }
465         cap = &crypto_drivers[hid];
466
467         if (cap->cc_dev) {
468                 CRYPTO_DRIVER_UNLOCK();
469                 /* Call the driver cleanup routine, if available, unlocked. */
470                 err = CRYPTODEV_FREESESSION(cap->cc_dev, sid);
471                 CRYPTO_DRIVER_LOCK();
472         }
473
474         if (cap->cc_sessions)
475                 cap->cc_sessions--;
476
477         if (cap->cc_flags & CRYPTOCAP_F_CLEANUP)
478                 crypto_remove(cap);
479
480 done:
481         CRYPTO_DRIVER_UNLOCK();
482         return err;
483 }
484
485 /*
486  * Return an unused driver id.  Used by drivers prior to registering
487  * support for the algorithms they handle.
488  */
489 int32_t
490 crypto_get_driverid(device_t dev, int flags)
491 {
492         struct cryptocap *newdrv;
493         int i;
494         unsigned long d_flags;
495
496         if ((flags & (CRYPTOCAP_F_HARDWARE | CRYPTOCAP_F_SOFTWARE)) == 0) {
497                 printf("%s: no flags specified when registering driver\n",
498                     device_get_nameunit(dev));
499                 return -1;
500         }
501
502         CRYPTO_DRIVER_LOCK();
503
504         for (i = 0; i < crypto_drivers_num; i++) {
505                 if (crypto_drivers[i].cc_dev == NULL &&
506                     (crypto_drivers[i].cc_flags & CRYPTOCAP_F_CLEANUP) == 0) {
507                         break;
508                 }
509         }
510
511         /* Out of entries, allocate some more. */
512         if (i == crypto_drivers_num) {
513                 /* Be careful about wrap-around. */
514                 if (2 * crypto_drivers_num <= crypto_drivers_num) {
515                         CRYPTO_DRIVER_UNLOCK();
516                         printk("crypto: driver count wraparound!\n");
517                         return -1;
518                 }
519
520                 newdrv = kmalloc(2 * crypto_drivers_num * sizeof(struct cryptocap),
521                                 GFP_KERNEL);
522                 if (newdrv == NULL) {
523                         CRYPTO_DRIVER_UNLOCK();
524                         printk("crypto: no space to expand driver table!\n");
525                         return -1;
526                 }
527
528                 memcpy(newdrv, crypto_drivers,
529                                 crypto_drivers_num * sizeof(struct cryptocap));
530                 memset(&newdrv[crypto_drivers_num], 0,
531                                 crypto_drivers_num * sizeof(struct cryptocap));
532
533                 crypto_drivers_num *= 2;
534
535                 kfree(crypto_drivers);
536                 crypto_drivers = newdrv;
537         }
538
539         /* NB: state is zero'd on free */
540         crypto_drivers[i].cc_sessions = 1;      /* Mark */
541         crypto_drivers[i].cc_dev = dev;
542         crypto_drivers[i].cc_flags = flags;
543         if (bootverbose)
544                 printf("crypto: assign %s driver id %u, flags %u\n",
545                     device_get_nameunit(dev), i, flags);
546
547         CRYPTO_DRIVER_UNLOCK();
548
549         return i;
550 }
551
552 /*
553  * Lookup a driver by name.  We match against the full device
554  * name and unit, and against just the name.  The latter gives
555  * us a simple widlcarding by device name.  On success return the
556  * driver/hardware identifier; otherwise return -1.
557  */
558 int
559 crypto_find_driver(const char *match)
560 {
561         int i, len = strlen(match);
562         unsigned long d_flags;
563
564         CRYPTO_DRIVER_LOCK();
565         for (i = 0; i < crypto_drivers_num; i++) {
566                 device_t dev = crypto_drivers[i].cc_dev;
567                 if (dev == NULL ||
568                     (crypto_drivers[i].cc_flags & CRYPTOCAP_F_CLEANUP))
569                         continue;
570                 if (strncmp(match, device_get_nameunit(dev), len) == 0 ||
571                     strncmp(match, device_get_name(dev), len) == 0)
572                         break;
573         }
574         CRYPTO_DRIVER_UNLOCK();
575         return i < crypto_drivers_num ? i : -1;
576 }
577
578 /*
579  * Return the device_t for the specified driver or NULL
580  * if the driver identifier is invalid.
581  */
582 device_t
583 crypto_find_device_byhid(int hid)
584 {
585         struct cryptocap *cap = crypto_checkdriver(hid);
586         return cap != NULL ? cap->cc_dev : NULL;
587 }
588
589 /*
590  * Return the device/driver capabilities.
591  */
592 int
593 crypto_getcaps(int hid)
594 {
595         struct cryptocap *cap = crypto_checkdriver(hid);
596         return cap != NULL ? cap->cc_flags : 0;
597 }
598
599 /*
600  * Register support for a key-related algorithm.  This routine
601  * is called once for each algorithm supported a driver.
602  */
603 int
604 crypto_kregister(u_int32_t driverid, int kalg, u_int32_t flags)
605 {
606         struct cryptocap *cap;
607         int err;
608         unsigned long d_flags;
609
610         dprintk("%s()\n", __FUNCTION__);
611         CRYPTO_DRIVER_LOCK();
612
613         cap = crypto_checkdriver(driverid);
614         if (cap != NULL &&
615             (CRK_ALGORITM_MIN <= kalg && kalg <= CRK_ALGORITHM_MAX)) {
616                 /*
617                  * XXX Do some performance testing to determine placing.
618                  * XXX We probably need an auxiliary data structure that
619                  * XXX describes relative performances.
620                  */
621
622                 cap->cc_kalg[kalg] = flags | CRYPTO_ALG_FLAG_SUPPORTED;
623                 if (bootverbose)
624                         printf("crypto: %s registers key alg %u flags %u\n"
625                                 , device_get_nameunit(cap->cc_dev)
626                                 , kalg
627                                 , flags
628                         );
629                 err = 0;
630         } else
631                 err = EINVAL;
632
633         CRYPTO_DRIVER_UNLOCK();
634         return err;
635 }
636
637 /*
638  * Register support for a non-key-related algorithm.  This routine
639  * is called once for each such algorithm supported by a driver.
640  */
641 int
642 crypto_register(u_int32_t driverid, int alg, u_int16_t maxoplen,
643     u_int32_t flags)
644 {
645         struct cryptocap *cap;
646         int err;
647         unsigned long d_flags;
648
649         dprintk("%s(id=0x%x, alg=%d, maxoplen=%d, flags=0x%x)\n", __FUNCTION__,
650                         driverid, alg, maxoplen, flags);
651
652         CRYPTO_DRIVER_LOCK();
653
654         cap = crypto_checkdriver(driverid);
655         /* NB: algorithms are in the range [1..max] */
656         if (cap != NULL &&
657             (CRYPTO_ALGORITHM_MIN <= alg && alg <= CRYPTO_ALGORITHM_MAX)) {
658                 /*
659                  * XXX Do some performance testing to determine placing.
660                  * XXX We probably need an auxiliary data structure that
661                  * XXX describes relative performances.
662                  */
663
664                 cap->cc_alg[alg] = flags | CRYPTO_ALG_FLAG_SUPPORTED;
665                 cap->cc_max_op_len[alg] = maxoplen;
666                 if (bootverbose)
667                         printf("crypto: %s registers alg %u flags %u maxoplen %u\n"
668                                 , device_get_nameunit(cap->cc_dev)
669                                 , alg
670                                 , flags
671                                 , maxoplen
672                         );
673                 cap->cc_sessions = 0;           /* Unmark */
674                 err = 0;
675         } else
676                 err = EINVAL;
677
678         CRYPTO_DRIVER_UNLOCK();
679         return err;
680 }
681
682 static void
683 driver_finis(struct cryptocap *cap)
684 {
685         u_int32_t ses, kops;
686
687         CRYPTO_DRIVER_ASSERT();
688
689         ses = cap->cc_sessions;
690         kops = cap->cc_koperations;
691         bzero(cap, sizeof(*cap));
692         if (ses != 0 || kops != 0) {
693                 /*
694                  * If there are pending sessions,
695                  * just mark as invalid.
696                  */
697                 cap->cc_flags |= CRYPTOCAP_F_CLEANUP;
698                 cap->cc_sessions = ses;
699                 cap->cc_koperations = kops;
700         }
701 }
702
703 /*
704  * Unregister a crypto driver. If there are pending sessions using it,
705  * leave enough information around so that subsequent calls using those
706  * sessions will correctly detect the driver has been unregistered and
707  * reroute requests.
708  */
709 int
710 crypto_unregister(u_int32_t driverid, int alg)
711 {
712         struct cryptocap *cap;
713         int i, err;
714         unsigned long d_flags;
715
716         dprintk("%s()\n", __FUNCTION__);
717         CRYPTO_DRIVER_LOCK();
718
719         cap = crypto_checkdriver(driverid);
720         if (cap != NULL &&
721             (CRYPTO_ALGORITHM_MIN <= alg && alg <= CRYPTO_ALGORITHM_MAX) &&
722             cap->cc_alg[alg] != 0) {
723                 cap->cc_alg[alg] = 0;
724                 cap->cc_max_op_len[alg] = 0;
725
726                 /* Was this the last algorithm ? */
727                 for (i = 1; i <= CRYPTO_ALGORITHM_MAX; i++)
728                         if (cap->cc_alg[i] != 0)
729                                 break;
730
731                 if (i == CRYPTO_ALGORITHM_MAX + 1)
732                         driver_finis(cap);
733                 err = 0;
734         } else
735                 err = EINVAL;
736         CRYPTO_DRIVER_UNLOCK();
737         return err;
738 }
739
740 /*
741  * Unregister all algorithms associated with a crypto driver.
742  * If there are pending sessions using it, leave enough information
743  * around so that subsequent calls using those sessions will
744  * correctly detect the driver has been unregistered and reroute
745  * requests.
746  */
747 int
748 crypto_unregister_all(u_int32_t driverid)
749 {
750         struct cryptocap *cap;
751         int err;
752         unsigned long d_flags;
753
754         dprintk("%s()\n", __FUNCTION__);
755         CRYPTO_DRIVER_LOCK();
756         cap = crypto_checkdriver(driverid);
757         if (cap != NULL) {
758                 driver_finis(cap);
759                 err = 0;
760         } else
761                 err = EINVAL;
762         CRYPTO_DRIVER_UNLOCK();
763
764         return err;
765 }
766
767 /*
768  * Clear blockage on a driver.  The what parameter indicates whether
769  * the driver is now ready for cryptop's and/or cryptokop's.
770  */
771 int
772 crypto_unblock(u_int32_t driverid, int what)
773 {
774         struct cryptocap *cap;
775         int err;
776         unsigned long q_flags;
777
778         CRYPTO_Q_LOCK();
779         cap = crypto_checkdriver(driverid);
780         if (cap != NULL) {
781                 if (what & CRYPTO_SYMQ) {
782                         cap->cc_qblocked = 0;
783                         cap->cc_unqblocked = 0;
784                         crypto_all_qblocked = 0;
785                 }
786                 if (what & CRYPTO_ASYMQ) {
787                         cap->cc_kqblocked = 0;
788                         cap->cc_unkqblocked = 0;
789                         crypto_all_kqblocked = 0;
790                 }
791                 if (crp_sleep)
792                         wake_up_interruptible(&cryptoproc_wait);
793                 err = 0;
794         } else
795                 err = EINVAL;
796         CRYPTO_Q_UNLOCK(); //DAVIDM should this be a driver lock
797
798         return err;
799 }
800
801 /*
802  * Add a crypto request to a queue, to be processed by the kernel thread.
803  */
804 int
805 crypto_dispatch(struct cryptop *crp)
806 {
807         struct cryptocap *cap;
808         int result = -1;
809         unsigned long q_flags;
810
811         dprintk("%s()\n", __FUNCTION__);
812
813         cryptostats.cs_ops++;
814
815         CRYPTO_Q_LOCK();
816         if (crypto_q_cnt >= crypto_q_max) {
817                 CRYPTO_Q_UNLOCK();
818                 cryptostats.cs_drops++;
819                 return ENOMEM;
820         }
821         crypto_q_cnt++;
822
823         /* make sure we are starting a fresh run on this crp. */
824         crp->crp_flags &= ~CRYPTO_F_DONE;
825         crp->crp_etype = 0;
826
827         /*
828          * Caller marked the request to be processed immediately; dispatch
829          * it directly to the driver unless the driver is currently blocked.
830          */
831         if ((crp->crp_flags & CRYPTO_F_BATCH) == 0) {
832                 int hid = CRYPTO_SESID2HID(crp->crp_sid);
833                 cap = crypto_checkdriver(hid);
834                 /* Driver cannot disappear when there is an active session. */
835                 KASSERT(cap != NULL, ("%s: Driver disappeared.", __func__));
836                 if (!cap->cc_qblocked) {
837                         crypto_all_qblocked = 0;
838                         crypto_drivers[hid].cc_unqblocked = 1;
839                         CRYPTO_Q_UNLOCK();
840                         result = crypto_invoke(cap, crp, 0);
841                         CRYPTO_Q_LOCK();
842                         if (result == ERESTART)
843                                 if (crypto_drivers[hid].cc_unqblocked)
844                                         crypto_drivers[hid].cc_qblocked = 1;
845                         crypto_drivers[hid].cc_unqblocked = 0;
846                 }
847         }
848         if (result == ERESTART) {
849                 /*
850                  * The driver ran out of resources, mark the
851                  * driver ``blocked'' for cryptop's and put
852                  * the request back in the queue.  It would
853                  * best to put the request back where we got
854                  * it but that's hard so for now we put it
855                  * at the front.  This should be ok; putting
856                  * it at the end does not work.
857                  */
858                 list_add(&crp->crp_next, &crp_q);
859                 cryptostats.cs_blocks++;
860                 result = 0;
861         } else if (result == -1) {
862                 TAILQ_INSERT_TAIL(&crp_q, crp, crp_next);
863                 result = 0;
864         }
865         if (crp_sleep)
866                 wake_up_interruptible(&cryptoproc_wait);
867         CRYPTO_Q_UNLOCK();
868         return result;
869 }
870
871 /*
872  * Add an asymetric crypto request to a queue,
873  * to be processed by the kernel thread.
874  */
875 int
876 crypto_kdispatch(struct cryptkop *krp)
877 {
878         int error;
879         unsigned long q_flags;
880
881         cryptostats.cs_kops++;
882
883         error = crypto_kinvoke(krp, krp->krp_crid);
884         if (error == ERESTART) {
885                 CRYPTO_Q_LOCK();
886                 TAILQ_INSERT_TAIL(&crp_kq, krp, krp_next);
887                 if (crp_sleep)
888                         wake_up_interruptible(&cryptoproc_wait);
889                 CRYPTO_Q_UNLOCK();
890                 error = 0;
891         }
892         return error;
893 }
894
895 /*
896  * Verify a driver is suitable for the specified operation.
897  */
898 static __inline int
899 kdriver_suitable(const struct cryptocap *cap, const struct cryptkop *krp)
900 {
901         return (cap->cc_kalg[krp->krp_op] & CRYPTO_ALG_FLAG_SUPPORTED) != 0;
902 }
903
904 /*
905  * Select a driver for an asym operation.  The driver must
906  * support the necessary algorithm.  The caller can constrain
907  * which device is selected with the flags parameter.  The
908  * algorithm we use here is pretty stupid; just use the first
909  * driver that supports the algorithms we need. If there are
910  * multiple suitable drivers we choose the driver with the
911  * fewest active operations.  We prefer hardware-backed
912  * drivers to software ones when either may be used.
913  */
914 static struct cryptocap *
915 crypto_select_kdriver(const struct cryptkop *krp, int flags)
916 {
917         struct cryptocap *cap, *best, *blocked;
918         int match, hid;
919
920         CRYPTO_DRIVER_ASSERT();
921
922         /*
923          * Look first for hardware crypto devices if permitted.
924          */
925         if (flags & CRYPTOCAP_F_HARDWARE)
926                 match = CRYPTOCAP_F_HARDWARE;
927         else
928                 match = CRYPTOCAP_F_SOFTWARE;
929         best = NULL;
930         blocked = NULL;
931 again:
932         for (hid = 0; hid < crypto_drivers_num; hid++) {
933                 cap = &crypto_drivers[hid];
934                 /*
935                  * If it's not initialized, is in the process of
936                  * going away, or is not appropriate (hardware
937                  * or software based on match), then skip.
938                  */
939                 if (cap->cc_dev == NULL ||
940                     (cap->cc_flags & CRYPTOCAP_F_CLEANUP) ||
941                     (cap->cc_flags & match) == 0)
942                         continue;
943
944                 /* verify all the algorithms are supported. */
945                 if (kdriver_suitable(cap, krp)) {
946                         if (best == NULL ||
947                             cap->cc_koperations < best->cc_koperations)
948                                 best = cap;
949                 }
950         }
951         if (best != NULL)
952                 return best;
953         if (match == CRYPTOCAP_F_HARDWARE && (flags & CRYPTOCAP_F_SOFTWARE)) {
954                 /* sort of an Algol 68-style for loop */
955                 match = CRYPTOCAP_F_SOFTWARE;
956                 goto again;
957         }
958         return best;
959 }
960
961 /*
962  * Dispatch an assymetric crypto request.
963  */
964 static int
965 crypto_kinvoke(struct cryptkop *krp, int crid)
966 {
967         struct cryptocap *cap = NULL;
968         int error;
969         unsigned long d_flags;
970
971         KASSERT(krp != NULL, ("%s: krp == NULL", __func__));
972         KASSERT(krp->krp_callback != NULL,
973             ("%s: krp->crp_callback == NULL", __func__));
974
975         CRYPTO_DRIVER_LOCK();
976         if ((crid & (CRYPTOCAP_F_HARDWARE | CRYPTOCAP_F_SOFTWARE)) == 0) {
977                 cap = crypto_checkdriver(crid);
978                 if (cap != NULL) {
979                         /*
980                          * Driver present, it must support the necessary
981                          * algorithm and, if s/w drivers are excluded,
982                          * it must be registered as hardware-backed.
983                          */
984                         if (!kdriver_suitable(cap, krp) ||
985                             (!crypto_devallowsoft &&
986                              (cap->cc_flags & CRYPTOCAP_F_HARDWARE) == 0))
987                                 cap = NULL;
988                 }
989         } else {
990                 /*
991                  * No requested driver; select based on crid flags.
992                  */
993                 if (!crypto_devallowsoft)       /* NB: disallow s/w drivers */
994                         crid &= ~CRYPTOCAP_F_SOFTWARE;
995                 cap = crypto_select_kdriver(krp, crid);
996         }
997         if (cap != NULL && !cap->cc_kqblocked) {
998                 krp->krp_hid = cap - crypto_drivers;
999                 cap->cc_koperations++;
1000                 CRYPTO_DRIVER_UNLOCK();
1001                 error = CRYPTODEV_KPROCESS(cap->cc_dev, krp, 0);
1002                 CRYPTO_DRIVER_LOCK();
1003                 if (error == ERESTART) {
1004                         cap->cc_koperations--;
1005                         CRYPTO_DRIVER_UNLOCK();
1006                         return (error);
1007                 }
1008                 /* return the actual device used */
1009                 krp->krp_crid = krp->krp_hid;
1010         } else {
1011                 /*
1012                  * NB: cap is !NULL if device is blocked; in
1013                  *     that case return ERESTART so the operation
1014                  *     is resubmitted if possible.
1015                  */
1016                 error = (cap == NULL) ? ENODEV : ERESTART;
1017         }
1018         CRYPTO_DRIVER_UNLOCK();
1019
1020         if (error) {
1021                 krp->krp_status = error;
1022                 crypto_kdone(krp);
1023         }
1024         return 0;
1025 }
1026
1027
1028 /*
1029  * Dispatch a crypto request to the appropriate crypto devices.
1030  */
1031 static int
1032 crypto_invoke(struct cryptocap *cap, struct cryptop *crp, int hint)
1033 {
1034         KASSERT(crp != NULL, ("%s: crp == NULL", __func__));
1035         KASSERT(crp->crp_callback != NULL,
1036             ("%s: crp->crp_callback == NULL", __func__));
1037         KASSERT(crp->crp_desc != NULL, ("%s: crp->crp_desc == NULL", __func__));
1038
1039         dprintk("%s()\n", __FUNCTION__);
1040
1041 #ifdef CRYPTO_TIMING
1042         if (crypto_timing)
1043                 crypto_tstat(&cryptostats.cs_invoke, &crp->crp_tstamp);
1044 #endif
1045         if (cap->cc_flags & CRYPTOCAP_F_CLEANUP) {
1046                 struct cryptodesc *crd;
1047                 u_int64_t nid;
1048
1049                 /*
1050                  * Driver has unregistered; migrate the session and return
1051                  * an error to the caller so they'll resubmit the op.
1052                  *
1053                  * XXX: What if there are more already queued requests for this
1054                  *      session?
1055                  */
1056                 crypto_freesession(crp->crp_sid);
1057
1058                 for (crd = crp->crp_desc; crd->crd_next; crd = crd->crd_next)
1059                         crd->CRD_INI.cri_next = &(crd->crd_next->CRD_INI);
1060
1061                 /* XXX propagate flags from initial session? */
1062                 if (crypto_newsession(&nid, &(crp->crp_desc->CRD_INI),
1063                     CRYPTOCAP_F_HARDWARE | CRYPTOCAP_F_SOFTWARE) == 0)
1064                         crp->crp_sid = nid;
1065
1066                 crp->crp_etype = EAGAIN;
1067                 crypto_done(crp);
1068                 return 0;
1069         } else {
1070                 /*
1071                  * Invoke the driver to process the request.
1072                  */
1073                 return CRYPTODEV_PROCESS(cap->cc_dev, crp, hint);
1074         }
1075 }
1076
1077 /*
1078  * Release a set of crypto descriptors.
1079  */
1080 void
1081 crypto_freereq(struct cryptop *crp)
1082 {
1083         struct cryptodesc *crd;
1084
1085         if (crp == NULL)
1086                 return;
1087
1088 #ifdef DIAGNOSTIC
1089         {
1090                 struct cryptop *crp2;
1091                 unsigned long q_flags;
1092
1093                 CRYPTO_Q_LOCK();
1094                 TAILQ_FOREACH(crp2, &crp_q, crp_next) {
1095                         KASSERT(crp2 != crp,
1096                             ("Freeing cryptop from the crypto queue (%p).",
1097                             crp));
1098                 }
1099                 CRYPTO_Q_UNLOCK();
1100                 CRYPTO_RETQ_LOCK();
1101                 TAILQ_FOREACH(crp2, &crp_ret_q, crp_next) {
1102                         KASSERT(crp2 != crp,
1103                             ("Freeing cryptop from the return queue (%p).",
1104                             crp));
1105                 }
1106                 CRYPTO_RETQ_UNLOCK();
1107         }
1108 #endif
1109
1110         while ((crd = crp->crp_desc) != NULL) {
1111                 crp->crp_desc = crd->crd_next;
1112                 kmem_cache_free(cryptodesc_zone, crd);
1113         }
1114         kmem_cache_free(cryptop_zone, crp);
1115 }
1116
1117 /*
1118  * Acquire a set of crypto descriptors.
1119  */
1120 struct cryptop *
1121 crypto_getreq(int num)
1122 {
1123         struct cryptodesc *crd;
1124         struct cryptop *crp;
1125
1126         crp = kmem_cache_alloc(cryptop_zone, SLAB_ATOMIC);
1127         if (crp != NULL) {
1128                 memset(crp, 0, sizeof(*crp));
1129                 INIT_LIST_HEAD(&crp->crp_next);
1130                 init_waitqueue_head(&crp->crp_waitq);
1131                 while (num--) {
1132                         crd = kmem_cache_alloc(cryptodesc_zone, SLAB_ATOMIC);
1133                         if (crd == NULL) {
1134                                 crypto_freereq(crp);
1135                                 return NULL;
1136                         }
1137                         memset(crd, 0, sizeof(*crd));
1138                         crd->crd_next = crp->crp_desc;
1139                         crp->crp_desc = crd;
1140                 }
1141         }
1142         return crp;
1143 }
1144
1145 /*
1146  * Invoke the callback on behalf of the driver.
1147  */
1148 void
1149 crypto_done(struct cryptop *crp)
1150 {
1151         unsigned long q_flags;
1152
1153         dprintk("%s()\n", __FUNCTION__);
1154         if ((crp->crp_flags & CRYPTO_F_DONE) == 0) {
1155                 crp->crp_flags |= CRYPTO_F_DONE;
1156                 CRYPTO_Q_LOCK();
1157                 crypto_q_cnt--;
1158                 CRYPTO_Q_UNLOCK();
1159         } else
1160                 printk("crypto: crypto_done op already done, flags 0x%x",
1161                                 crp->crp_flags);
1162         if (crp->crp_etype != 0)
1163                 cryptostats.cs_errs++;
1164         /*
1165          * CBIMM means unconditionally do the callback immediately;
1166          * CBIFSYNC means do the callback immediately only if the
1167          * operation was done synchronously.  Both are used to avoid
1168          * doing extraneous context switches; the latter is mostly
1169          * used with the software crypto driver.
1170          */
1171         if ((crp->crp_flags & CRYPTO_F_CBIMM) ||
1172             ((crp->crp_flags & CRYPTO_F_CBIFSYNC) &&
1173              (CRYPTO_SESID2CAPS(crp->crp_sid) & CRYPTOCAP_F_SYNC))) {
1174                 /*
1175                  * Do the callback directly.  This is ok when the
1176                  * callback routine does very little (e.g. the
1177                  * /dev/crypto callback method just does a wakeup).
1178                  */
1179                 crp->crp_callback(crp);
1180         } else {
1181                 unsigned long r_flags;
1182                 /*
1183                  * Normal case; queue the callback for the thread.
1184                  */
1185                 CRYPTO_RETQ_LOCK();
1186                 if (CRYPTO_RETQ_EMPTY())
1187                         wake_up_interruptible(&cryptoretproc_wait);/* shared wait channel */
1188                 TAILQ_INSERT_TAIL(&crp_ret_q, crp, crp_next);
1189                 CRYPTO_RETQ_UNLOCK();
1190         }
1191 }
1192
1193 /*
1194  * Invoke the callback on behalf of the driver.
1195  */
1196 void
1197 crypto_kdone(struct cryptkop *krp)
1198 {
1199         struct cryptocap *cap;
1200         unsigned long d_flags;
1201
1202         if ((krp->krp_flags & CRYPTO_KF_DONE) != 0)
1203                 printk("crypto: crypto_kdone op already done, flags 0x%x",
1204                                 krp->krp_flags);
1205         krp->krp_flags |= CRYPTO_KF_DONE;
1206         if (krp->krp_status != 0)
1207                 cryptostats.cs_kerrs++;
1208
1209         CRYPTO_DRIVER_LOCK();
1210         /* XXX: What if driver is loaded in the meantime? */
1211         if (krp->krp_hid < crypto_drivers_num) {
1212                 cap = &crypto_drivers[krp->krp_hid];
1213                 cap->cc_koperations--;
1214                 KASSERT(cap->cc_koperations >= 0, ("cc_koperations < 0"));
1215                 if (cap->cc_flags & CRYPTOCAP_F_CLEANUP)
1216                         crypto_remove(cap);
1217         }
1218         CRYPTO_DRIVER_UNLOCK();
1219
1220         /*
1221          * CBIMM means unconditionally do the callback immediately;
1222          * This is used to avoid doing extraneous context switches
1223          */
1224         if ((krp->krp_flags & CRYPTO_KF_CBIMM)) {
1225                 /*
1226                  * Do the callback directly.  This is ok when the
1227                  * callback routine does very little (e.g. the
1228                  * /dev/crypto callback method just does a wakeup).
1229                  */
1230                 krp->krp_callback(krp);
1231         } else {
1232                 unsigned long r_flags;
1233                 /*
1234                  * Normal case; queue the callback for the thread.
1235                  */
1236                 CRYPTO_RETQ_LOCK();
1237                 if (CRYPTO_RETQ_EMPTY())
1238                         wake_up_interruptible(&cryptoretproc_wait);/* shared wait channel */
1239                 TAILQ_INSERT_TAIL(&crp_ret_kq, krp, krp_next);
1240                 CRYPTO_RETQ_UNLOCK();
1241         }
1242 }
1243
1244 int
1245 crypto_getfeat(int *featp)
1246 {
1247         int hid, kalg, feat = 0;
1248         unsigned long d_flags;
1249
1250         CRYPTO_DRIVER_LOCK();
1251         for (hid = 0; hid < crypto_drivers_num; hid++) {
1252                 const struct cryptocap *cap = &crypto_drivers[hid];
1253
1254                 if ((cap->cc_flags & CRYPTOCAP_F_SOFTWARE) &&
1255                     !crypto_devallowsoft) {
1256                         continue;
1257                 }
1258                 for (kalg = 0; kalg < CRK_ALGORITHM_MAX; kalg++)
1259                         if (cap->cc_kalg[kalg] & CRYPTO_ALG_FLAG_SUPPORTED)
1260                                 feat |=  1 << kalg;
1261         }
1262         CRYPTO_DRIVER_UNLOCK();
1263         *featp = feat;
1264         return (0);
1265 }
1266
1267 /*
1268  * Crypto thread, dispatches crypto requests.
1269  */
1270 static int
1271 crypto_proc(void *arg)
1272 {
1273         struct cryptop *crp, *submit;
1274         struct cryptkop *krp, *krpp;
1275         struct cryptocap *cap;
1276         u_int32_t hid;
1277         int result, hint;
1278         unsigned long q_flags;
1279         int loopcount = 0;
1280
1281         ocf_daemonize("crypto");
1282
1283         CRYPTO_Q_LOCK();
1284         for (;;) {
1285                 /*
1286                  * we need to make sure we don't get into a busy loop with nothing
1287                  * to do,  the two crypto_all_*blocked vars help us find out when
1288                  * we are all full and can do nothing on any driver or Q.  If so we
1289                  * wait for an unblock.
1290                  */
1291                 crypto_all_qblocked  = !list_empty(&crp_q);
1292
1293                 /*
1294                  * Find the first element in the queue that can be
1295                  * processed and look-ahead to see if multiple ops
1296                  * are ready for the same driver.
1297                  */
1298                 submit = NULL;
1299                 hint = 0;
1300                 list_for_each_entry(crp, &crp_q, crp_next) {
1301                         hid = CRYPTO_SESID2HID(crp->crp_sid);
1302                         cap = crypto_checkdriver(hid);
1303                         /*
1304                          * Driver cannot disappear when there is an active
1305                          * session.
1306                          */
1307                         KASSERT(cap != NULL, ("%s:%u Driver disappeared.",
1308                             __func__, __LINE__));
1309                         if (cap == NULL || cap->cc_dev == NULL) {
1310                                 /* Op needs to be migrated, process it. */
1311                                 if (submit == NULL)
1312                                         submit = crp;
1313                                 break;
1314                         }
1315                         if (!cap->cc_qblocked) {
1316                                 if (submit != NULL) {
1317                                         /*
1318                                          * We stop on finding another op,
1319                                          * regardless whether its for the same
1320                                          * driver or not.  We could keep
1321                                          * searching the queue but it might be
1322                                          * better to just use a per-driver
1323                                          * queue instead.
1324                                          */
1325                                         if (CRYPTO_SESID2HID(submit->crp_sid) == hid)
1326                                                 hint = CRYPTO_HINT_MORE;
1327                                         break;
1328                                 } else {
1329                                         submit = crp;
1330                                         if ((submit->crp_flags & CRYPTO_F_BATCH) == 0)
1331                                                 break;
1332                                         /* keep scanning for more are q'd */
1333                                 }
1334                         }
1335                 }
1336                 if (submit != NULL) {
1337                         hid = CRYPTO_SESID2HID(submit->crp_sid);
1338                         crypto_all_qblocked = 0;
1339                         list_del(&submit->crp_next);
1340                         crypto_drivers[hid].cc_unqblocked = 1;
1341                         cap = crypto_checkdriver(hid);
1342                         CRYPTO_Q_UNLOCK();
1343                         KASSERT(cap != NULL, ("%s:%u Driver disappeared.",
1344                             __func__, __LINE__));
1345                         result = crypto_invoke(cap, submit, hint);
1346                         CRYPTO_Q_LOCK();
1347                         if (result == ERESTART) {
1348                                 /*
1349                                  * The driver ran out of resources, mark the
1350                                  * driver ``blocked'' for cryptop's and put
1351                                  * the request back in the queue.  It would
1352                                  * best to put the request back where we got
1353                                  * it but that's hard so for now we put it
1354                                  * at the front.  This should be ok; putting
1355                                  * it at the end does not work.
1356                                  */
1357                                 /* XXX validate sid again? */
1358                                 list_add(&submit->crp_next, &crp_q);
1359                                 cryptostats.cs_blocks++;
1360                                 if (crypto_drivers[hid].cc_unqblocked)
1361                                         crypto_drivers[hid].cc_qblocked=0;
1362                                 crypto_drivers[hid].cc_unqblocked=0;
1363                         }
1364                         crypto_drivers[hid].cc_unqblocked = 0;
1365                 }
1366
1367                 crypto_all_kqblocked = !list_empty(&crp_kq);
1368
1369                 /* As above, but for key ops */
1370                 krp = NULL;
1371                 list_for_each_entry(krpp, &crp_kq, krp_next) {
1372                         cap = crypto_checkdriver(krpp->krp_hid);
1373                         if (cap == NULL || cap->cc_dev == NULL) {
1374                                 /*
1375                                  * Operation needs to be migrated, invalidate
1376                                  * the assigned device so it will reselect a
1377                                  * new one below.  Propagate the original
1378                                  * crid selection flags if supplied.
1379                                  */
1380                                 krp->krp_hid = krp->krp_crid &
1381                                     (CRYPTOCAP_F_SOFTWARE|CRYPTOCAP_F_HARDWARE);
1382                                 if (krp->krp_hid == 0)
1383                                         krp->krp_hid =
1384                                     CRYPTOCAP_F_SOFTWARE|CRYPTOCAP_F_HARDWARE;
1385                                 break;
1386                         }
1387                         if (!cap->cc_kqblocked) {
1388                                 krp = krpp;
1389                                 break;
1390                         }
1391                 }
1392                 if (krp != NULL) {
1393                         crypto_all_kqblocked = 0;
1394                         list_del(&krp->krp_next);
1395                         crypto_drivers[krp->krp_hid].cc_kqblocked = 1;
1396                         CRYPTO_Q_UNLOCK();
1397                         result = crypto_kinvoke(krp, krp->krp_hid);
1398                         CRYPTO_Q_LOCK();
1399                         if (result == ERESTART) {
1400                                 /*
1401                                  * The driver ran out of resources, mark the
1402                                  * driver ``blocked'' for cryptkop's and put
1403                                  * the request back in the queue.  It would
1404                                  * best to put the request back where we got
1405                                  * it but that's hard so for now we put it
1406                                  * at the front.  This should be ok; putting
1407                                  * it at the end does not work.
1408                                  */
1409                                 /* XXX validate sid again? */
1410                                 list_add(&krp->krp_next, &crp_kq);
1411                                 cryptostats.cs_kblocks++;
1412                         } else
1413                                 crypto_drivers[krp->krp_hid].cc_kqblocked = 0;
1414                 }
1415
1416                 if (submit == NULL && krp == NULL) {
1417                         /*
1418                          * Nothing more to be processed.  Sleep until we're
1419                          * woken because there are more ops to process.
1420                          * This happens either by submission or by a driver
1421                          * becoming unblocked and notifying us through
1422                          * crypto_unblock.  Note that when we wakeup we
1423                          * start processing each queue again from the
1424                          * front. It's not clear that it's important to
1425                          * preserve this ordering since ops may finish
1426                          * out of order if dispatched to different devices
1427                          * and some become blocked while others do not.
1428                          */
1429                         dprintk("%s - sleeping (qe=%d qb=%d kqe=%d kqb=%d)\n",
1430                                         __FUNCTION__,
1431                                         list_empty(&crp_q), crypto_all_qblocked,
1432                                         list_empty(&crp_kq), crypto_all_kqblocked);
1433                         loopcount = 0;
1434                         CRYPTO_Q_UNLOCK();
1435                         crp_sleep = 1;
1436                         wait_event_interruptible(cryptoproc_wait,
1437                                         !(list_empty(&crp_q) || crypto_all_qblocked) ||
1438                                         !(list_empty(&crp_kq) || crypto_all_kqblocked) ||
1439                                         cryptoproc == (pid_t) -1);
1440                         crp_sleep = 0;
1441                         if (signal_pending (current)) {
1442 #if LINUX_VERSION_CODE < KERNEL_VERSION(2,6,0)
1443                                 spin_lock_irq(&current->sigmask_lock);
1444 #endif
1445                                 flush_signals(current);
1446 #if LINUX_VERSION_CODE < KERNEL_VERSION(2,6,0)
1447                                 spin_unlock_irq(&current->sigmask_lock);
1448 #endif
1449                         }
1450                         CRYPTO_Q_LOCK();
1451                         dprintk("%s - awake\n", __FUNCTION__);
1452                         if (cryptoproc == (pid_t) -1)
1453                                 break;
1454                         cryptostats.cs_intrs++;
1455                 } else if (loopcount > crypto_max_loopcount) {
1456                         /*
1457                          * Give other processes a chance to run if we've 
1458                          * been using the CPU exclusively for a while.
1459                          */
1460                         loopcount = 0;
1461                         schedule();
1462                 }
1463                 loopcount++;
1464         }
1465         CRYPTO_Q_UNLOCK();
1466         complete_and_exit(&cryptoproc_exited, 0);
1467 }
1468
1469 /*
1470  * Crypto returns thread, does callbacks for processed crypto requests.
1471  * Callbacks are done here, rather than in the crypto drivers, because
1472  * callbacks typically are expensive and would slow interrupt handling.
1473  */
1474 static int
1475 crypto_ret_proc(void *arg)
1476 {
1477         struct cryptop *crpt;
1478         struct cryptkop *krpt;
1479         unsigned long  r_flags;
1480
1481         ocf_daemonize("crypto_ret");
1482
1483         CRYPTO_RETQ_LOCK();
1484         for (;;) {
1485                 /* Harvest return q's for completed ops */
1486                 crpt = NULL;
1487                 if (!list_empty(&crp_ret_q))
1488                         crpt = list_entry(crp_ret_q.next, typeof(*crpt), crp_next);
1489                 if (crpt != NULL)
1490                         list_del(&crpt->crp_next);
1491
1492                 krpt = NULL;
1493                 if (!list_empty(&crp_ret_kq))
1494                         krpt = list_entry(crp_ret_kq.next, typeof(*krpt), krp_next);
1495                 if (krpt != NULL)
1496                         list_del(&krpt->krp_next);
1497
1498                 if (crpt != NULL || krpt != NULL) {
1499                         CRYPTO_RETQ_UNLOCK();
1500                         /*
1501                          * Run callbacks unlocked.
1502                          */
1503                         if (crpt != NULL)
1504                                 crpt->crp_callback(crpt);
1505                         if (krpt != NULL)
1506                                 krpt->krp_callback(krpt);
1507                         CRYPTO_RETQ_LOCK();
1508                 } else {
1509                         /*
1510                          * Nothing more to be processed.  Sleep until we're
1511                          * woken because there are more returns to process.
1512                          */
1513                         dprintk("%s - sleeping\n", __FUNCTION__);
1514                         CRYPTO_RETQ_UNLOCK();
1515                         wait_event_interruptible(cryptoretproc_wait,
1516                                         cryptoretproc == (pid_t) -1 ||
1517                                         !list_empty(&crp_ret_q) ||
1518                                         !list_empty(&crp_ret_kq));
1519                         if (signal_pending (current)) {
1520 #if LINUX_VERSION_CODE < KERNEL_VERSION(2,6,0)
1521                                 spin_lock_irq(&current->sigmask_lock);
1522 #endif
1523                                 flush_signals(current);
1524 #if LINUX_VERSION_CODE < KERNEL_VERSION(2,6,0)
1525                                 spin_unlock_irq(&current->sigmask_lock);
1526 #endif
1527                         }
1528                         CRYPTO_RETQ_LOCK();
1529                         dprintk("%s - awake\n", __FUNCTION__);
1530                         if (cryptoretproc == (pid_t) -1) {
1531                                 dprintk("%s - EXITING!\n", __FUNCTION__);
1532                                 break;
1533                         }
1534                         cryptostats.cs_rets++;
1535                 }
1536         }
1537         CRYPTO_RETQ_UNLOCK();
1538         complete_and_exit(&cryptoretproc_exited, 0);
1539 }
1540
1541
1542 #if 0 /* should put this into /proc or something */
1543 static void
1544 db_show_drivers(void)
1545 {
1546         int hid;
1547
1548         db_printf("%12s %4s %4s %8s %2s %2s\n"
1549                 , "Device"
1550                 , "Ses"
1551                 , "Kops"
1552                 , "Flags"
1553                 , "QB"
1554                 , "KB"
1555         );
1556         for (hid = 0; hid < crypto_drivers_num; hid++) {
1557                 const struct cryptocap *cap = &crypto_drivers[hid];
1558                 if (cap->cc_dev == NULL)
1559                         continue;
1560                 db_printf("%-12s %4u %4u %08x %2u %2u\n"
1561                     , device_get_nameunit(cap->cc_dev)
1562                     , cap->cc_sessions
1563                     , cap->cc_koperations
1564                     , cap->cc_flags
1565                     , cap->cc_qblocked
1566                     , cap->cc_kqblocked
1567                 );
1568         }
1569 }
1570
1571 DB_SHOW_COMMAND(crypto, db_show_crypto)
1572 {
1573         struct cryptop *crp;
1574
1575         db_show_drivers();
1576         db_printf("\n");
1577
1578         db_printf("%4s %8s %4s %4s %4s %4s %8s %8s\n",
1579             "HID", "Caps", "Ilen", "Olen", "Etype", "Flags",
1580             "Desc", "Callback");
1581         TAILQ_FOREACH(crp, &crp_q, crp_next) {
1582                 db_printf("%4u %08x %4u %4u %4u %04x %8p %8p\n"
1583                     , (int) CRYPTO_SESID2HID(crp->crp_sid)
1584                     , (int) CRYPTO_SESID2CAPS(crp->crp_sid)
1585                     , crp->crp_ilen, crp->crp_olen
1586                     , crp->crp_etype
1587                     , crp->crp_flags
1588                     , crp->crp_desc
1589                     , crp->crp_callback
1590                 );
1591         }
1592         if (!TAILQ_EMPTY(&crp_ret_q)) {
1593                 db_printf("\n%4s %4s %4s %8s\n",
1594                     "HID", "Etype", "Flags", "Callback");
1595                 TAILQ_FOREACH(crp, &crp_ret_q, crp_next) {
1596                         db_printf("%4u %4u %04x %8p\n"
1597                             , (int) CRYPTO_SESID2HID(crp->crp_sid)
1598                             , crp->crp_etype
1599                             , crp->crp_flags
1600                             , crp->crp_callback
1601                         );
1602                 }
1603         }
1604 }
1605
1606 DB_SHOW_COMMAND(kcrypto, db_show_kcrypto)
1607 {
1608         struct cryptkop *krp;
1609
1610         db_show_drivers();
1611         db_printf("\n");
1612
1613         db_printf("%4s %5s %4s %4s %8s %4s %8s\n",
1614             "Op", "Status", "#IP", "#OP", "CRID", "HID", "Callback");
1615         TAILQ_FOREACH(krp, &crp_kq, krp_next) {
1616                 db_printf("%4u %5u %4u %4u %08x %4u %8p\n"
1617                     , krp->krp_op
1618                     , krp->krp_status
1619                     , krp->krp_iparams, krp->krp_oparams
1620                     , krp->krp_crid, krp->krp_hid
1621                     , krp->krp_callback
1622                 );
1623         }
1624         if (!TAILQ_EMPTY(&crp_ret_q)) {
1625                 db_printf("%4s %5s %8s %4s %8s\n",
1626                     "Op", "Status", "CRID", "HID", "Callback");
1627                 TAILQ_FOREACH(krp, &crp_ret_kq, krp_next) {
1628                         db_printf("%4u %5u %08x %4u %8p\n"
1629                             , krp->krp_op
1630                             , krp->krp_status
1631                             , krp->krp_crid, krp->krp_hid
1632                             , krp->krp_callback
1633                         );
1634                 }
1635         }
1636 }
1637 #endif
1638
1639
1640 static int
1641 crypto_init(void)
1642 {
1643         int error;
1644
1645         dprintk("%s(%p)\n", __FUNCTION__, (void *) crypto_init);
1646
1647         if (crypto_initted)
1648                 return 0;
1649         crypto_initted = 1;
1650
1651         spin_lock_init(&crypto_drivers_lock);
1652         spin_lock_init(&crypto_q_lock);
1653         spin_lock_init(&crypto_ret_q_lock);
1654
1655         cryptop_zone = kmem_cache_create("cryptop", sizeof(struct cryptop),
1656                                        0, SLAB_HWCACHE_ALIGN, NULL
1657 #if LINUX_VERSION_CODE < KERNEL_VERSION(2,6,23)
1658                                        , NULL
1659 #endif
1660                                         );
1661
1662         cryptodesc_zone = kmem_cache_create("cryptodesc", sizeof(struct cryptodesc),
1663                                        0, SLAB_HWCACHE_ALIGN, NULL
1664 #if LINUX_VERSION_CODE < KERNEL_VERSION(2,6,23)
1665                                        , NULL
1666 #endif
1667                                         );
1668
1669         if (cryptodesc_zone == NULL || cryptop_zone == NULL) {
1670                 printk("crypto: crypto_init cannot setup crypto zones\n");
1671                 error = ENOMEM;
1672                 goto bad;
1673         }
1674
1675         crypto_drivers_num = CRYPTO_DRIVERS_INITIAL;
1676         crypto_drivers = kmalloc(crypto_drivers_num * sizeof(struct cryptocap),
1677                         GFP_KERNEL);
1678         if (crypto_drivers == NULL) {
1679                 printk("crypto: crypto_init cannot setup crypto drivers\n");
1680                 error = ENOMEM;
1681                 goto bad;
1682         }
1683
1684         memset(crypto_drivers, 0, crypto_drivers_num * sizeof(struct cryptocap));
1685
1686         init_completion(&cryptoproc_exited);
1687         init_completion(&cryptoretproc_exited);
1688
1689         cryptoproc = 0; /* to avoid race condition where proc runs first */
1690         cryptoproc = kernel_thread(crypto_proc, NULL, CLONE_FS|CLONE_FILES);
1691         if (cryptoproc < 0) {
1692                 error = cryptoproc;
1693                 printk("crypto: crypto_init cannot start crypto thread; error %d",
1694                         error);
1695                 goto bad;
1696         }
1697
1698         cryptoretproc = 0; /* to avoid race condition where proc runs first */
1699         cryptoretproc = kernel_thread(crypto_ret_proc, NULL, CLONE_FS|CLONE_FILES);
1700         if (cryptoretproc < 0) {
1701                 error = cryptoretproc;
1702                 printk("crypto: crypto_init cannot start cryptoret thread; error %d",
1703                                 error);
1704                 goto bad;
1705         }
1706
1707         return 0;
1708 bad:
1709         crypto_exit();
1710         return error;
1711 }
1712
1713
1714 static void
1715 crypto_exit(void)
1716 {
1717         pid_t p;
1718         unsigned long d_flags;
1719
1720         dprintk("%s()\n", __FUNCTION__);
1721
1722         /*
1723          * Terminate any crypto threads.
1724          */
1725
1726         CRYPTO_DRIVER_LOCK();
1727         p = cryptoproc;
1728         cryptoproc = (pid_t) -1;
1729         kill_proc(p, SIGTERM, 1);
1730         wake_up_interruptible(&cryptoproc_wait);
1731         CRYPTO_DRIVER_UNLOCK();
1732
1733         wait_for_completion(&cryptoproc_exited);
1734
1735         CRYPTO_DRIVER_LOCK();
1736         p = cryptoretproc;
1737         cryptoretproc = (pid_t) -1;
1738         kill_proc(p, SIGTERM, 1);
1739         wake_up_interruptible(&cryptoretproc_wait);
1740         CRYPTO_DRIVER_UNLOCK();
1741
1742         wait_for_completion(&cryptoretproc_exited);
1743
1744         /* XXX flush queues??? */
1745
1746         /* 
1747          * Reclaim dynamically allocated resources.
1748          */
1749         if (crypto_drivers != NULL)
1750                 kfree(crypto_drivers);
1751
1752         if (cryptodesc_zone != NULL)
1753                 kmem_cache_destroy(cryptodesc_zone);
1754         if (cryptop_zone != NULL)
1755                 kmem_cache_destroy(cryptop_zone);
1756 }
1757
1758
1759 EXPORT_SYMBOL(crypto_newsession);
1760 EXPORT_SYMBOL(crypto_freesession);
1761 EXPORT_SYMBOL(crypto_get_driverid);
1762 EXPORT_SYMBOL(crypto_kregister);
1763 EXPORT_SYMBOL(crypto_register);
1764 EXPORT_SYMBOL(crypto_unregister);
1765 EXPORT_SYMBOL(crypto_unregister_all);
1766 EXPORT_SYMBOL(crypto_unblock);
1767 EXPORT_SYMBOL(crypto_dispatch);
1768 EXPORT_SYMBOL(crypto_kdispatch);
1769 EXPORT_SYMBOL(crypto_freereq);
1770 EXPORT_SYMBOL(crypto_getreq);
1771 EXPORT_SYMBOL(crypto_done);
1772 EXPORT_SYMBOL(crypto_kdone);
1773 EXPORT_SYMBOL(crypto_getfeat);
1774 EXPORT_SYMBOL(crypto_userasymcrypto);
1775 EXPORT_SYMBOL(crypto_getcaps);
1776 EXPORT_SYMBOL(crypto_find_driver);
1777 EXPORT_SYMBOL(crypto_find_device_byhid);
1778
1779 module_init(crypto_init);
1780 module_exit(crypto_exit);
1781
1782 MODULE_LICENSE("BSD");
1783 MODULE_AUTHOR("David McCullough <david_mccullough@mcafee.com>");
1784 MODULE_DESCRIPTION("OCF (OpenBSD Cryptographic Framework)");