f48210d06219a2f77f1f3ce95696c41e991f1b41
[openwrt.git] / target / linux / generic / files / crypto / ocf / crypto.c
1 /*-
2  * Linux port done by David McCullough <david_mccullough@mcafee.com>
3  * Copyright (C) 2006-2010 David McCullough
4  * Copyright (C) 2004-2005 Intel Corporation.
5  * The license and original author are listed below.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * Copyright (c) 2002-2006 Sam Leffler.  All rights reserved.
9  *
10  * modification, are permitted provided that the following conditions
11  * are met:
12  * 1. Redistributions of source code must retain the above copyright
13  *    notice, this list of conditions and the following disclaimer.
14  * 2. Redistributions in binary form must reproduce the above copyright
15  *    notice, this list of conditions and the following disclaimer in the
16  *    documentation and/or other materials provided with the distribution.
17  *
18  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
19  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
20  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
21  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
22  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
23  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
24  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
25  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
26  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
27  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
28  */
29
30 #if 0
31 #include <sys/cdefs.h>
32 __FBSDID("$FreeBSD: src/sys/opencrypto/crypto.c,v 1.27 2007/03/21 03:42:51 sam Exp $");
33 #endif
34
35 /*
36  * Cryptographic Subsystem.
37  *
38  * This code is derived from the Openbsd Cryptographic Framework (OCF)
39  * that has the copyright shown below.  Very little of the original
40  * code remains.
41  */
42 /*-
43  * The author of this code is Angelos D. Keromytis (angelos@cis.upenn.edu)
44  *
45  * This code was written by Angelos D. Keromytis in Athens, Greece, in
46  * February 2000. Network Security Technologies Inc. (NSTI) kindly
47  * supported the development of this code.
48  *
49  * Copyright (c) 2000, 2001 Angelos D. Keromytis
50  *
51  * Permission to use, copy, and modify this software with or without fee
52  * is hereby granted, provided that this entire notice is included in
53  * all source code copies of any software which is or includes a copy or
54  * modification of this software.
55  *
56  * THIS SOFTWARE IS BEING PROVIDED "AS IS", WITHOUT ANY EXPRESS OR
57  * IMPLIED WARRANTY. IN PARTICULAR, NONE OF THE AUTHORS MAKES ANY
58  * REPRESENTATION OR WARRANTY OF ANY KIND CONCERNING THE
59  * MERCHANTABILITY OF THIS SOFTWARE OR ITS FITNESS FOR ANY PARTICULAR
60  * PURPOSE.
61  *
62 __FBSDID("$FreeBSD: src/sys/opencrypto/crypto.c,v 1.16 2005/01/07 02:29:16 imp Exp $");
63  */
64
65
66 #include <linux/version.h>
67 #if LINUX_VERSION_CODE < KERNEL_VERSION(2,6,38) && !defined(AUTOCONF_INCLUDED)
68 #include <linux/config.h>
69 #endif
70 #include <linux/module.h>
71 #include <linux/init.h>
72 #include <linux/list.h>
73 #include <linux/slab.h>
74 #include <linux/wait.h>
75 #include <linux/sched.h>
76 #include <linux/spinlock.h>
77 #if LINUX_VERSION_CODE >= KERNEL_VERSION(2,6,4)
78 #include <linux/kthread.h>
79 #endif
80 #include <cryptodev.h>
81
82 /*
83  * keep track of whether or not we have been initialised, a big
84  * issue if we are linked into the kernel and a driver gets started before
85  * us
86  */
87 static int crypto_initted = 0;
88
89 /*
90  * Crypto drivers register themselves by allocating a slot in the
91  * crypto_drivers table with crypto_get_driverid() and then registering
92  * each algorithm they support with crypto_register() and crypto_kregister().
93  */
94
95 /*
96  * lock on driver table
97  * we track its state as spin_is_locked does not do anything on non-SMP boxes
98  */
99 static spinlock_t       crypto_drivers_lock;
100 static int                      crypto_drivers_locked;          /* for non-SMP boxes */
101
102 #define CRYPTO_DRIVER_LOCK() \
103                         ({ \
104                                 spin_lock_irqsave(&crypto_drivers_lock, d_flags); \
105                                 crypto_drivers_locked = 1; \
106                                 dprintk("%s,%d: DRIVER_LOCK()\n", __FILE__, __LINE__); \
107                          })
108 #define CRYPTO_DRIVER_UNLOCK() \
109                         ({ \
110                                 dprintk("%s,%d: DRIVER_UNLOCK()\n", __FILE__, __LINE__); \
111                                 crypto_drivers_locked = 0; \
112                                 spin_unlock_irqrestore(&crypto_drivers_lock, d_flags); \
113                          })
114 #define CRYPTO_DRIVER_ASSERT() \
115                         ({ \
116                                 if (!crypto_drivers_locked) { \
117                                         dprintk("%s,%d: DRIVER_ASSERT!\n", __FILE__, __LINE__); \
118                                 } \
119                          })
120
121 /*
122  * Crypto device/driver capabilities structure.
123  *
124  * Synchronization:
125  * (d) - protected by CRYPTO_DRIVER_LOCK()
126  * (q) - protected by CRYPTO_Q_LOCK()
127  * Not tagged fields are read-only.
128  */
129 struct cryptocap {
130         device_t        cc_dev;                 /* (d) device/driver */
131         u_int32_t       cc_sessions;            /* (d) # of sessions */
132         u_int32_t       cc_koperations;         /* (d) # os asym operations */
133         /*
134          * Largest possible operator length (in bits) for each type of
135          * encryption algorithm. XXX not used
136          */
137         u_int16_t       cc_max_op_len[CRYPTO_ALGORITHM_MAX + 1];
138         u_int8_t        cc_alg[CRYPTO_ALGORITHM_MAX + 1];
139         u_int8_t        cc_kalg[CRK_ALGORITHM_MAX + 1];
140
141         int             cc_flags;               /* (d) flags */
142 #define CRYPTOCAP_F_CLEANUP     0x80000000      /* needs resource cleanup */
143         int             cc_qblocked;            /* (q) symmetric q blocked */
144         int             cc_kqblocked;           /* (q) asymmetric q blocked */
145
146         int             cc_unqblocked;          /* (q) symmetric q blocked */
147         int             cc_unkqblocked;         /* (q) asymmetric q blocked */
148 };
149 static struct cryptocap *crypto_drivers = NULL;
150 static int crypto_drivers_num = 0;
151
152 /*
153  * There are two queues for crypto requests; one for symmetric (e.g.
154  * cipher) operations and one for asymmetric (e.g. MOD)operations.
155  * A single mutex is used to lock access to both queues.  We could
156  * have one per-queue but having one simplifies handling of block/unblock
157  * operations.
158  */
159 static LIST_HEAD(crp_q);                /* crypto request queue */
160 static LIST_HEAD(crp_kq);               /* asym request queue */
161
162 static spinlock_t crypto_q_lock;
163
164 int crypto_all_qblocked = 0;  /* protect with Q_LOCK */
165 module_param(crypto_all_qblocked, int, 0444);
166 MODULE_PARM_DESC(crypto_all_qblocked, "Are all crypto queues blocked");
167
168 int crypto_all_kqblocked = 0; /* protect with Q_LOCK */
169 module_param(crypto_all_kqblocked, int, 0444);
170 MODULE_PARM_DESC(crypto_all_kqblocked, "Are all asym crypto queues blocked");
171
172 #define CRYPTO_Q_LOCK() \
173                         ({ \
174                                 spin_lock_irqsave(&crypto_q_lock, q_flags); \
175                                 dprintk("%s,%d: Q_LOCK()\n", __FILE__, __LINE__); \
176                          })
177 #define CRYPTO_Q_UNLOCK() \
178                         ({ \
179                                 dprintk("%s,%d: Q_UNLOCK()\n", __FILE__, __LINE__); \
180                                 spin_unlock_irqrestore(&crypto_q_lock, q_flags); \
181                          })
182
183 /*
184  * There are two queues for processing completed crypto requests; one
185  * for the symmetric and one for the asymmetric ops.  We only need one
186  * but have two to avoid type futzing (cryptop vs. cryptkop).  A single
187  * mutex is used to lock access to both queues.  Note that this lock
188  * must be separate from the lock on request queues to insure driver
189  * callbacks don't generate lock order reversals.
190  */
191 static LIST_HEAD(crp_ret_q);            /* callback queues */
192 static LIST_HEAD(crp_ret_kq);
193
194 static spinlock_t crypto_ret_q_lock;
195 #define CRYPTO_RETQ_LOCK() \
196                         ({ \
197                                 spin_lock_irqsave(&crypto_ret_q_lock, r_flags); \
198                                 dprintk("%s,%d: RETQ_LOCK\n", __FILE__, __LINE__); \
199                          })
200 #define CRYPTO_RETQ_UNLOCK() \
201                         ({ \
202                                 dprintk("%s,%d: RETQ_UNLOCK\n", __FILE__, __LINE__); \
203                                 spin_unlock_irqrestore(&crypto_ret_q_lock, r_flags); \
204                          })
205 #define CRYPTO_RETQ_EMPTY()     (list_empty(&crp_ret_q) && list_empty(&crp_ret_kq))
206
207 #if LINUX_VERSION_CODE < KERNEL_VERSION(2,6,20)
208 static kmem_cache_t *cryptop_zone;
209 static kmem_cache_t *cryptodesc_zone;
210 #else
211 static struct kmem_cache *cryptop_zone;
212 static struct kmem_cache *cryptodesc_zone;
213 #endif
214
215 #define debug crypto_debug
216 int crypto_debug = 0;
217 module_param(crypto_debug, int, 0644);
218 MODULE_PARM_DESC(crypto_debug, "Enable debug");
219 EXPORT_SYMBOL(crypto_debug);
220
221 /*
222  * Maximum number of outstanding crypto requests before we start
223  * failing requests.  We need this to prevent DOS when too many
224  * requests are arriving for us to keep up.  Otherwise we will
225  * run the system out of memory.  Since crypto is slow,  we are
226  * usually the bottleneck that needs to say, enough is enough.
227  *
228  * We cannot print errors when this condition occurs,  we are already too
229  * slow,  printing anything will just kill us
230  */
231
232 static int crypto_q_cnt = 0;
233 module_param(crypto_q_cnt, int, 0444);
234 MODULE_PARM_DESC(crypto_q_cnt,
235                 "Current number of outstanding crypto requests");
236
237 static int crypto_q_max = 1000;
238 module_param(crypto_q_max, int, 0644);
239 MODULE_PARM_DESC(crypto_q_max,
240                 "Maximum number of outstanding crypto requests");
241
242 #define bootverbose crypto_verbose
243 static int crypto_verbose = 0;
244 module_param(crypto_verbose, int, 0644);
245 MODULE_PARM_DESC(crypto_verbose,
246                 "Enable verbose crypto startup");
247
248 int     crypto_usercrypto = 1;  /* userland may do crypto reqs */
249 module_param(crypto_usercrypto, int, 0644);
250 MODULE_PARM_DESC(crypto_usercrypto,
251            "Enable/disable user-mode access to crypto support");
252
253 int     crypto_userasymcrypto = 1;      /* userland may do asym crypto reqs */
254 module_param(crypto_userasymcrypto, int, 0644);
255 MODULE_PARM_DESC(crypto_userasymcrypto,
256            "Enable/disable user-mode access to asymmetric crypto support");
257
258 int     crypto_devallowsoft = 0;        /* only use hardware crypto */
259 module_param(crypto_devallowsoft, int, 0644);
260 MODULE_PARM_DESC(crypto_devallowsoft,
261            "Enable/disable use of software crypto support");
262
263 /*
264  * This parameter controls the maximum number of crypto operations to 
265  * do consecutively in the crypto kernel thread before scheduling to allow 
266  * other processes to run. Without it, it is possible to get into a 
267  * situation where the crypto thread never allows any other processes to run.
268  * Default to 1000 which should be less than one second.
269  */
270 static int crypto_max_loopcount = 1000;
271 module_param(crypto_max_loopcount, int, 0644);
272 MODULE_PARM_DESC(crypto_max_loopcount,
273            "Maximum number of crypto ops to do before yielding to other processes");
274
275 #ifndef CONFIG_NR_CPUS
276 #define CONFIG_NR_CPUS 1
277 #endif
278
279 static struct task_struct *cryptoproc[CONFIG_NR_CPUS];
280 static struct task_struct *cryptoretproc[CONFIG_NR_CPUS];
281 static DECLARE_WAIT_QUEUE_HEAD(cryptoproc_wait);
282 static DECLARE_WAIT_QUEUE_HEAD(cryptoretproc_wait);
283
284 static  int crypto_proc(void *arg);
285 static  int crypto_ret_proc(void *arg);
286 static  int crypto_invoke(struct cryptocap *cap, struct cryptop *crp, int hint);
287 static  int crypto_kinvoke(struct cryptkop *krp, int flags);
288 static  void crypto_exit(void);
289 static  int crypto_init(void);
290
291 static  struct cryptostats cryptostats;
292
293 static struct cryptocap *
294 crypto_checkdriver(u_int32_t hid)
295 {
296         if (crypto_drivers == NULL)
297                 return NULL;
298         return (hid >= crypto_drivers_num ? NULL : &crypto_drivers[hid]);
299 }
300
301 /*
302  * Compare a driver's list of supported algorithms against another
303  * list; return non-zero if all algorithms are supported.
304  */
305 static int
306 driver_suitable(const struct cryptocap *cap, const struct cryptoini *cri)
307 {
308         const struct cryptoini *cr;
309
310         /* See if all the algorithms are supported. */
311         for (cr = cri; cr; cr = cr->cri_next)
312                 if (cap->cc_alg[cr->cri_alg] == 0)
313                         return 0;
314         return 1;
315 }
316
317
318 /*
319  * Select a driver for a new session that supports the specified
320  * algorithms and, optionally, is constrained according to the flags.
321  * The algorithm we use here is pretty stupid; just use the
322  * first driver that supports all the algorithms we need. If there
323  * are multiple drivers we choose the driver with the fewest active
324  * sessions.  We prefer hardware-backed drivers to software ones.
325  *
326  * XXX We need more smarts here (in real life too, but that's
327  * XXX another story altogether).
328  */
329 static struct cryptocap *
330 crypto_select_driver(const struct cryptoini *cri, int flags)
331 {
332         struct cryptocap *cap, *best;
333         int match, hid;
334
335         CRYPTO_DRIVER_ASSERT();
336
337         /*
338          * Look first for hardware crypto devices if permitted.
339          */
340         if (flags & CRYPTOCAP_F_HARDWARE)
341                 match = CRYPTOCAP_F_HARDWARE;
342         else
343                 match = CRYPTOCAP_F_SOFTWARE;
344         best = NULL;
345 again:
346         for (hid = 0; hid < crypto_drivers_num; hid++) {
347                 cap = &crypto_drivers[hid];
348                 /*
349                  * If it's not initialized, is in the process of
350                  * going away, or is not appropriate (hardware
351                  * or software based on match), then skip.
352                  */
353                 if (cap->cc_dev == NULL ||
354                     (cap->cc_flags & CRYPTOCAP_F_CLEANUP) ||
355                     (cap->cc_flags & match) == 0)
356                         continue;
357
358                 /* verify all the algorithms are supported. */
359                 if (driver_suitable(cap, cri)) {
360                         if (best == NULL ||
361                             cap->cc_sessions < best->cc_sessions)
362                                 best = cap;
363                 }
364         }
365         if (best != NULL)
366                 return best;
367         if (match == CRYPTOCAP_F_HARDWARE && (flags & CRYPTOCAP_F_SOFTWARE)) {
368                 /* sort of an Algol 68-style for loop */
369                 match = CRYPTOCAP_F_SOFTWARE;
370                 goto again;
371         }
372         return best;
373 }
374
375 /*
376  * Create a new session.  The crid argument specifies a crypto
377  * driver to use or constraints on a driver to select (hardware
378  * only, software only, either).  Whatever driver is selected
379  * must be capable of the requested crypto algorithms.
380  */
381 int
382 crypto_newsession(u_int64_t *sid, struct cryptoini *cri, int crid)
383 {
384         struct cryptocap *cap;
385         u_int32_t hid, lid;
386         int err;
387         unsigned long d_flags;
388
389         CRYPTO_DRIVER_LOCK();
390         if ((crid & (CRYPTOCAP_F_HARDWARE | CRYPTOCAP_F_SOFTWARE)) == 0) {
391                 /*
392                  * Use specified driver; verify it is capable.
393                  */
394                 cap = crypto_checkdriver(crid);
395                 if (cap != NULL && !driver_suitable(cap, cri))
396                         cap = NULL;
397         } else {
398                 /*
399                  * No requested driver; select based on crid flags.
400                  */
401                 cap = crypto_select_driver(cri, crid);
402                 /*
403                  * if NULL then can't do everything in one session.
404                  * XXX Fix this. We need to inject a "virtual" session
405                  * XXX layer right about here.
406                  */
407         }
408         if (cap != NULL) {
409                 /* Call the driver initialization routine. */
410                 hid = cap - crypto_drivers;
411                 lid = hid;              /* Pass the driver ID. */
412                 cap->cc_sessions++;
413                 CRYPTO_DRIVER_UNLOCK();
414                 err = CRYPTODEV_NEWSESSION(cap->cc_dev, &lid, cri);
415                 CRYPTO_DRIVER_LOCK();
416                 if (err == 0) {
417                         (*sid) = (cap->cc_flags & 0xff000000)
418                                | (hid & 0x00ffffff);
419                         (*sid) <<= 32;
420                         (*sid) |= (lid & 0xffffffff);
421                 } else
422                         cap->cc_sessions--;
423         } else
424                 err = EINVAL;
425         CRYPTO_DRIVER_UNLOCK();
426         return err;
427 }
428
429 static void
430 crypto_remove(struct cryptocap *cap)
431 {
432         CRYPTO_DRIVER_ASSERT();
433         if (cap->cc_sessions == 0 && cap->cc_koperations == 0)
434                 bzero(cap, sizeof(*cap));
435 }
436
437 /*
438  * Delete an existing session (or a reserved session on an unregistered
439  * driver).
440  */
441 int
442 crypto_freesession(u_int64_t sid)
443 {
444         struct cryptocap *cap;
445         u_int32_t hid;
446         int err = 0;
447         unsigned long d_flags;
448
449         dprintk("%s()\n", __FUNCTION__);
450         CRYPTO_DRIVER_LOCK();
451
452         if (crypto_drivers == NULL) {
453                 err = EINVAL;
454                 goto done;
455         }
456
457         /* Determine two IDs. */
458         hid = CRYPTO_SESID2HID(sid);
459
460         if (hid >= crypto_drivers_num) {
461                 dprintk("%s - INVALID DRIVER NUM %d\n", __FUNCTION__, hid);
462                 err = ENOENT;
463                 goto done;
464         }
465         cap = &crypto_drivers[hid];
466
467         if (cap->cc_dev) {
468                 CRYPTO_DRIVER_UNLOCK();
469                 /* Call the driver cleanup routine, if available, unlocked. */
470                 err = CRYPTODEV_FREESESSION(cap->cc_dev, sid);
471                 CRYPTO_DRIVER_LOCK();
472         }
473
474         if (cap->cc_sessions)
475                 cap->cc_sessions--;
476
477         if (cap->cc_flags & CRYPTOCAP_F_CLEANUP)
478                 crypto_remove(cap);
479
480 done:
481         CRYPTO_DRIVER_UNLOCK();
482         return err;
483 }
484
485 /*
486  * Return an unused driver id.  Used by drivers prior to registering
487  * support for the algorithms they handle.
488  */
489 int32_t
490 crypto_get_driverid(device_t dev, int flags)
491 {
492         struct cryptocap *newdrv;
493         int i;
494         unsigned long d_flags;
495
496         if ((flags & (CRYPTOCAP_F_HARDWARE | CRYPTOCAP_F_SOFTWARE)) == 0) {
497                 printf("%s: no flags specified when registering driver\n",
498                     device_get_nameunit(dev));
499                 return -1;
500         }
501
502         CRYPTO_DRIVER_LOCK();
503
504         for (i = 0; i < crypto_drivers_num; i++) {
505                 if (crypto_drivers[i].cc_dev == NULL &&
506                     (crypto_drivers[i].cc_flags & CRYPTOCAP_F_CLEANUP) == 0) {
507                         break;
508                 }
509         }
510
511         /* Out of entries, allocate some more. */
512         if (i == crypto_drivers_num) {
513                 /* Be careful about wrap-around. */
514                 if (2 * crypto_drivers_num <= crypto_drivers_num) {
515                         CRYPTO_DRIVER_UNLOCK();
516                         printk("crypto: driver count wraparound!\n");
517                         return -1;
518                 }
519
520                 newdrv = kmalloc(2 * crypto_drivers_num * sizeof(struct cryptocap),
521                                 GFP_KERNEL);
522                 if (newdrv == NULL) {
523                         CRYPTO_DRIVER_UNLOCK();
524                         printk("crypto: no space to expand driver table!\n");
525                         return -1;
526                 }
527
528                 memcpy(newdrv, crypto_drivers,
529                                 crypto_drivers_num * sizeof(struct cryptocap));
530                 memset(&newdrv[crypto_drivers_num], 0,
531                                 crypto_drivers_num * sizeof(struct cryptocap));
532
533                 crypto_drivers_num *= 2;
534
535                 kfree(crypto_drivers);
536                 crypto_drivers = newdrv;
537         }
538
539         /* NB: state is zero'd on free */
540         crypto_drivers[i].cc_sessions = 1;      /* Mark */
541         crypto_drivers[i].cc_dev = dev;
542         crypto_drivers[i].cc_flags = flags;
543         if (bootverbose)
544                 printf("crypto: assign %s driver id %u, flags %u\n",
545                     device_get_nameunit(dev), i, flags);
546
547         CRYPTO_DRIVER_UNLOCK();
548
549         return i;
550 }
551
552 /*
553  * Lookup a driver by name.  We match against the full device
554  * name and unit, and against just the name.  The latter gives
555  * us a simple widlcarding by device name.  On success return the
556  * driver/hardware identifier; otherwise return -1.
557  */
558 int
559 crypto_find_driver(const char *match)
560 {
561         int i, len = strlen(match);
562         unsigned long d_flags;
563
564         CRYPTO_DRIVER_LOCK();
565         for (i = 0; i < crypto_drivers_num; i++) {
566                 device_t dev = crypto_drivers[i].cc_dev;
567                 if (dev == NULL ||
568                     (crypto_drivers[i].cc_flags & CRYPTOCAP_F_CLEANUP))
569                         continue;
570                 if (strncmp(match, device_get_nameunit(dev), len) == 0 ||
571                     strncmp(match, device_get_name(dev), len) == 0)
572                         break;
573         }
574         CRYPTO_DRIVER_UNLOCK();
575         return i < crypto_drivers_num ? i : -1;
576 }
577
578 /*
579  * Return the device_t for the specified driver or NULL
580  * if the driver identifier is invalid.
581  */
582 device_t
583 crypto_find_device_byhid(int hid)
584 {
585         struct cryptocap *cap = crypto_checkdriver(hid);
586         return cap != NULL ? cap->cc_dev : NULL;
587 }
588
589 /*
590  * Return the device/driver capabilities.
591  */
592 int
593 crypto_getcaps(int hid)
594 {
595         struct cryptocap *cap = crypto_checkdriver(hid);
596         return cap != NULL ? cap->cc_flags : 0;
597 }
598
599 /*
600  * Register support for a key-related algorithm.  This routine
601  * is called once for each algorithm supported a driver.
602  */
603 int
604 crypto_kregister(u_int32_t driverid, int kalg, u_int32_t flags)
605 {
606         struct cryptocap *cap;
607         int err;
608         unsigned long d_flags;
609
610         dprintk("%s()\n", __FUNCTION__);
611         CRYPTO_DRIVER_LOCK();
612
613         cap = crypto_checkdriver(driverid);
614         if (cap != NULL &&
615             (CRK_ALGORITM_MIN <= kalg && kalg <= CRK_ALGORITHM_MAX)) {
616                 /*
617                  * XXX Do some performance testing to determine placing.
618                  * XXX We probably need an auxiliary data structure that
619                  * XXX describes relative performances.
620                  */
621
622                 cap->cc_kalg[kalg] = flags | CRYPTO_ALG_FLAG_SUPPORTED;
623                 if (bootverbose)
624                         printf("crypto: %s registers key alg %u flags %u\n"
625                                 , device_get_nameunit(cap->cc_dev)
626                                 , kalg
627                                 , flags
628                         );
629                 err = 0;
630         } else
631                 err = EINVAL;
632
633         CRYPTO_DRIVER_UNLOCK();
634         return err;
635 }
636
637 /*
638  * Register support for a non-key-related algorithm.  This routine
639  * is called once for each such algorithm supported by a driver.
640  */
641 int
642 crypto_register(u_int32_t driverid, int alg, u_int16_t maxoplen,
643     u_int32_t flags)
644 {
645         struct cryptocap *cap;
646         int err;
647         unsigned long d_flags;
648
649         dprintk("%s(id=0x%x, alg=%d, maxoplen=%d, flags=0x%x)\n", __FUNCTION__,
650                         driverid, alg, maxoplen, flags);
651
652         CRYPTO_DRIVER_LOCK();
653
654         cap = crypto_checkdriver(driverid);
655         /* NB: algorithms are in the range [1..max] */
656         if (cap != NULL &&
657             (CRYPTO_ALGORITHM_MIN <= alg && alg <= CRYPTO_ALGORITHM_MAX)) {
658                 /*
659                  * XXX Do some performance testing to determine placing.
660                  * XXX We probably need an auxiliary data structure that
661                  * XXX describes relative performances.
662                  */
663
664                 cap->cc_alg[alg] = flags | CRYPTO_ALG_FLAG_SUPPORTED;
665                 cap->cc_max_op_len[alg] = maxoplen;
666                 if (bootverbose)
667                         printf("crypto: %s registers alg %u flags %u maxoplen %u\n"
668                                 , device_get_nameunit(cap->cc_dev)
669                                 , alg
670                                 , flags
671                                 , maxoplen
672                         );
673                 cap->cc_sessions = 0;           /* Unmark */
674                 err = 0;
675         } else
676                 err = EINVAL;
677
678         CRYPTO_DRIVER_UNLOCK();
679         return err;
680 }
681
682 static void
683 driver_finis(struct cryptocap *cap)
684 {
685         u_int32_t ses, kops;
686
687         CRYPTO_DRIVER_ASSERT();
688
689         ses = cap->cc_sessions;
690         kops = cap->cc_koperations;
691         bzero(cap, sizeof(*cap));
692         if (ses != 0 || kops != 0) {
693                 /*
694                  * If there are pending sessions,
695                  * just mark as invalid.
696                  */
697                 cap->cc_flags |= CRYPTOCAP_F_CLEANUP;
698                 cap->cc_sessions = ses;
699                 cap->cc_koperations = kops;
700         }
701 }
702
703 /*
704  * Unregister a crypto driver. If there are pending sessions using it,
705  * leave enough information around so that subsequent calls using those
706  * sessions will correctly detect the driver has been unregistered and
707  * reroute requests.
708  */
709 int
710 crypto_unregister(u_int32_t driverid, int alg)
711 {
712         struct cryptocap *cap;
713         int i, err;
714         unsigned long d_flags;
715
716         dprintk("%s()\n", __FUNCTION__);
717         CRYPTO_DRIVER_LOCK();
718
719         cap = crypto_checkdriver(driverid);
720         if (cap != NULL &&
721             (CRYPTO_ALGORITHM_MIN <= alg && alg <= CRYPTO_ALGORITHM_MAX) &&
722             cap->cc_alg[alg] != 0) {
723                 cap->cc_alg[alg] = 0;
724                 cap->cc_max_op_len[alg] = 0;
725
726                 /* Was this the last algorithm ? */
727                 for (i = 1; i <= CRYPTO_ALGORITHM_MAX; i++)
728                         if (cap->cc_alg[i] != 0)
729                                 break;
730
731                 if (i == CRYPTO_ALGORITHM_MAX + 1)
732                         driver_finis(cap);
733                 err = 0;
734         } else
735                 err = EINVAL;
736         CRYPTO_DRIVER_UNLOCK();
737         return err;
738 }
739
740 /*
741  * Unregister all algorithms associated with a crypto driver.
742  * If there are pending sessions using it, leave enough information
743  * around so that subsequent calls using those sessions will
744  * correctly detect the driver has been unregistered and reroute
745  * requests.
746  */
747 int
748 crypto_unregister_all(u_int32_t driverid)
749 {
750         struct cryptocap *cap;
751         int err;
752         unsigned long d_flags;
753
754         dprintk("%s()\n", __FUNCTION__);
755         CRYPTO_DRIVER_LOCK();
756         cap = crypto_checkdriver(driverid);
757         if (cap != NULL) {
758                 driver_finis(cap);
759                 err = 0;
760         } else
761                 err = EINVAL;
762         CRYPTO_DRIVER_UNLOCK();
763
764         return err;
765 }
766
767 /*
768  * Clear blockage on a driver.  The what parameter indicates whether
769  * the driver is now ready for cryptop's and/or cryptokop's.
770  */
771 int
772 crypto_unblock(u_int32_t driverid, int what)
773 {
774         struct cryptocap *cap;
775         int err;
776         unsigned long q_flags;
777
778         CRYPTO_Q_LOCK();
779         cap = crypto_checkdriver(driverid);
780         if (cap != NULL) {
781                 if (what & CRYPTO_SYMQ) {
782                         cap->cc_qblocked = 0;
783                         cap->cc_unqblocked = 0;
784                         crypto_all_qblocked = 0;
785                 }
786                 if (what & CRYPTO_ASYMQ) {
787                         cap->cc_kqblocked = 0;
788                         cap->cc_unkqblocked = 0;
789                         crypto_all_kqblocked = 0;
790                 }
791                 wake_up_interruptible(&cryptoproc_wait);
792                 err = 0;
793         } else
794                 err = EINVAL;
795         CRYPTO_Q_UNLOCK(); //DAVIDM should this be a driver lock
796
797         return err;
798 }
799
800 /*
801  * Add a crypto request to a queue, to be processed by the kernel thread.
802  */
803 int
804 crypto_dispatch(struct cryptop *crp)
805 {
806         struct cryptocap *cap;
807         int result = -1;
808         unsigned long q_flags;
809
810         dprintk("%s()\n", __FUNCTION__);
811
812         cryptostats.cs_ops++;
813
814         CRYPTO_Q_LOCK();
815         if (crypto_q_cnt >= crypto_q_max) {
816                 cryptostats.cs_drops++;
817                 CRYPTO_Q_UNLOCK();
818                 return ENOMEM;
819         }
820         crypto_q_cnt++;
821
822         /* make sure we are starting a fresh run on this crp. */
823         crp->crp_flags &= ~CRYPTO_F_DONE;
824         crp->crp_etype = 0;
825
826         /*
827          * Caller marked the request to be processed immediately; dispatch
828          * it directly to the driver unless the driver is currently blocked.
829          */
830         if ((crp->crp_flags & CRYPTO_F_BATCH) == 0) {
831                 int hid = CRYPTO_SESID2HID(crp->crp_sid);
832                 cap = crypto_checkdriver(hid);
833                 /* Driver cannot disappear when there is an active session. */
834                 KASSERT(cap != NULL, ("%s: Driver disappeared.", __func__));
835                 if (!cap->cc_qblocked) {
836                         crypto_all_qblocked = 0;
837                         crypto_drivers[hid].cc_unqblocked = 1;
838                         CRYPTO_Q_UNLOCK();
839                         result = crypto_invoke(cap, crp, 0);
840                         CRYPTO_Q_LOCK();
841                         if (result == ERESTART)
842                                 if (crypto_drivers[hid].cc_unqblocked)
843                                         crypto_drivers[hid].cc_qblocked = 1;
844                         crypto_drivers[hid].cc_unqblocked = 0;
845                 }
846         }
847         if (result == ERESTART) {
848                 /*
849                  * The driver ran out of resources, mark the
850                  * driver ``blocked'' for cryptop's and put
851                  * the request back in the queue.  It would
852                  * best to put the request back where we got
853                  * it but that's hard so for now we put it
854                  * at the front.  This should be ok; putting
855                  * it at the end does not work.
856                  */
857                 list_add(&crp->crp_next, &crp_q);
858                 cryptostats.cs_blocks++;
859                 result = 0;
860         } else if (result == -1) {
861                 TAILQ_INSERT_TAIL(&crp_q, crp, crp_next);
862                 result = 0;
863         }
864         wake_up_interruptible(&cryptoproc_wait);
865         CRYPTO_Q_UNLOCK();
866         return result;
867 }
868
869 /*
870  * Add an asymetric crypto request to a queue,
871  * to be processed by the kernel thread.
872  */
873 int
874 crypto_kdispatch(struct cryptkop *krp)
875 {
876         int error;
877         unsigned long q_flags;
878
879         cryptostats.cs_kops++;
880
881         error = crypto_kinvoke(krp, krp->krp_crid);
882         if (error == ERESTART) {
883                 CRYPTO_Q_LOCK();
884                 TAILQ_INSERT_TAIL(&crp_kq, krp, krp_next);
885                 wake_up_interruptible(&cryptoproc_wait);
886                 CRYPTO_Q_UNLOCK();
887                 error = 0;
888         }
889         return error;
890 }
891
892 /*
893  * Verify a driver is suitable for the specified operation.
894  */
895 static __inline int
896 kdriver_suitable(const struct cryptocap *cap, const struct cryptkop *krp)
897 {
898         return (cap->cc_kalg[krp->krp_op] & CRYPTO_ALG_FLAG_SUPPORTED) != 0;
899 }
900
901 /*
902  * Select a driver for an asym operation.  The driver must
903  * support the necessary algorithm.  The caller can constrain
904  * which device is selected with the flags parameter.  The
905  * algorithm we use here is pretty stupid; just use the first
906  * driver that supports the algorithms we need. If there are
907  * multiple suitable drivers we choose the driver with the
908  * fewest active operations.  We prefer hardware-backed
909  * drivers to software ones when either may be used.
910  */
911 static struct cryptocap *
912 crypto_select_kdriver(const struct cryptkop *krp, int flags)
913 {
914         struct cryptocap *cap, *best, *blocked;
915         int match, hid;
916
917         CRYPTO_DRIVER_ASSERT();
918
919         /*
920          * Look first for hardware crypto devices if permitted.
921          */
922         if (flags & CRYPTOCAP_F_HARDWARE)
923                 match = CRYPTOCAP_F_HARDWARE;
924         else
925                 match = CRYPTOCAP_F_SOFTWARE;
926         best = NULL;
927         blocked = NULL;
928 again:
929         for (hid = 0; hid < crypto_drivers_num; hid++) {
930                 cap = &crypto_drivers[hid];
931                 /*
932                  * If it's not initialized, is in the process of
933                  * going away, or is not appropriate (hardware
934                  * or software based on match), then skip.
935                  */
936                 if (cap->cc_dev == NULL ||
937                     (cap->cc_flags & CRYPTOCAP_F_CLEANUP) ||
938                     (cap->cc_flags & match) == 0)
939                         continue;
940
941                 /* verify all the algorithms are supported. */
942                 if (kdriver_suitable(cap, krp)) {
943                         if (best == NULL ||
944                             cap->cc_koperations < best->cc_koperations)
945                                 best = cap;
946                 }
947         }
948         if (best != NULL)
949                 return best;
950         if (match == CRYPTOCAP_F_HARDWARE && (flags & CRYPTOCAP_F_SOFTWARE)) {
951                 /* sort of an Algol 68-style for loop */
952                 match = CRYPTOCAP_F_SOFTWARE;
953                 goto again;
954         }
955         return best;
956 }
957
958 /*
959  * Dispatch an assymetric crypto request.
960  */
961 static int
962 crypto_kinvoke(struct cryptkop *krp, int crid)
963 {
964         struct cryptocap *cap = NULL;
965         int error;
966         unsigned long d_flags;
967
968         KASSERT(krp != NULL, ("%s: krp == NULL", __func__));
969         KASSERT(krp->krp_callback != NULL,
970             ("%s: krp->crp_callback == NULL", __func__));
971
972         CRYPTO_DRIVER_LOCK();
973         if ((crid & (CRYPTOCAP_F_HARDWARE | CRYPTOCAP_F_SOFTWARE)) == 0) {
974                 cap = crypto_checkdriver(crid);
975                 if (cap != NULL) {
976                         /*
977                          * Driver present, it must support the necessary
978                          * algorithm and, if s/w drivers are excluded,
979                          * it must be registered as hardware-backed.
980                          */
981                         if (!kdriver_suitable(cap, krp) ||
982                             (!crypto_devallowsoft &&
983                              (cap->cc_flags & CRYPTOCAP_F_HARDWARE) == 0))
984                                 cap = NULL;
985                 }
986         } else {
987                 /*
988                  * No requested driver; select based on crid flags.
989                  */
990                 if (!crypto_devallowsoft)       /* NB: disallow s/w drivers */
991                         crid &= ~CRYPTOCAP_F_SOFTWARE;
992                 cap = crypto_select_kdriver(krp, crid);
993         }
994         if (cap != NULL && !cap->cc_kqblocked) {
995                 krp->krp_hid = cap - crypto_drivers;
996                 cap->cc_koperations++;
997                 CRYPTO_DRIVER_UNLOCK();
998                 error = CRYPTODEV_KPROCESS(cap->cc_dev, krp, 0);
999                 CRYPTO_DRIVER_LOCK();
1000                 if (error == ERESTART) {
1001                         cap->cc_koperations--;
1002                         CRYPTO_DRIVER_UNLOCK();
1003                         return (error);
1004                 }
1005                 /* return the actual device used */
1006                 krp->krp_crid = krp->krp_hid;
1007         } else {
1008                 /*
1009                  * NB: cap is !NULL if device is blocked; in
1010                  *     that case return ERESTART so the operation
1011                  *     is resubmitted if possible.
1012                  */
1013                 error = (cap == NULL) ? ENODEV : ERESTART;
1014         }
1015         CRYPTO_DRIVER_UNLOCK();
1016
1017         if (error) {
1018                 krp->krp_status = error;
1019                 crypto_kdone(krp);
1020         }
1021         return 0;
1022 }
1023
1024
1025 /*
1026  * Dispatch a crypto request to the appropriate crypto devices.
1027  */
1028 static int
1029 crypto_invoke(struct cryptocap *cap, struct cryptop *crp, int hint)
1030 {
1031         KASSERT(crp != NULL, ("%s: crp == NULL", __func__));
1032         KASSERT(crp->crp_callback != NULL,
1033             ("%s: crp->crp_callback == NULL", __func__));
1034         KASSERT(crp->crp_desc != NULL, ("%s: crp->crp_desc == NULL", __func__));
1035
1036         dprintk("%s()\n", __FUNCTION__);
1037
1038 #ifdef CRYPTO_TIMING
1039         if (crypto_timing)
1040                 crypto_tstat(&cryptostats.cs_invoke, &crp->crp_tstamp);
1041 #endif
1042         if (cap->cc_flags & CRYPTOCAP_F_CLEANUP) {
1043                 struct cryptodesc *crd;
1044                 u_int64_t nid;
1045
1046                 /*
1047                  * Driver has unregistered; migrate the session and return
1048                  * an error to the caller so they'll resubmit the op.
1049                  *
1050                  * XXX: What if there are more already queued requests for this
1051                  *      session?
1052                  */
1053                 crypto_freesession(crp->crp_sid);
1054
1055                 for (crd = crp->crp_desc; crd->crd_next; crd = crd->crd_next)
1056                         crd->CRD_INI.cri_next = &(crd->crd_next->CRD_INI);
1057
1058                 /* XXX propagate flags from initial session? */
1059                 if (crypto_newsession(&nid, &(crp->crp_desc->CRD_INI),
1060                     CRYPTOCAP_F_HARDWARE | CRYPTOCAP_F_SOFTWARE) == 0)
1061                         crp->crp_sid = nid;
1062
1063                 crp->crp_etype = EAGAIN;
1064                 crypto_done(crp);
1065                 return 0;
1066         } else {
1067                 /*
1068                  * Invoke the driver to process the request.
1069                  */
1070                 return CRYPTODEV_PROCESS(cap->cc_dev, crp, hint);
1071         }
1072 }
1073
1074 /*
1075  * Release a set of crypto descriptors.
1076  */
1077 void
1078 crypto_freereq(struct cryptop *crp)
1079 {
1080         struct cryptodesc *crd;
1081
1082         if (crp == NULL)
1083                 return;
1084
1085 #ifdef DIAGNOSTIC
1086         {
1087                 struct cryptop *crp2;
1088                 unsigned long q_flags;
1089
1090                 CRYPTO_Q_LOCK();
1091                 TAILQ_FOREACH(crp2, &crp_q, crp_next) {
1092                         KASSERT(crp2 != crp,
1093                             ("Freeing cryptop from the crypto queue (%p).",
1094                             crp));
1095                 }
1096                 CRYPTO_Q_UNLOCK();
1097                 CRYPTO_RETQ_LOCK();
1098                 TAILQ_FOREACH(crp2, &crp_ret_q, crp_next) {
1099                         KASSERT(crp2 != crp,
1100                             ("Freeing cryptop from the return queue (%p).",
1101                             crp));
1102                 }
1103                 CRYPTO_RETQ_UNLOCK();
1104         }
1105 #endif
1106
1107         while ((crd = crp->crp_desc) != NULL) {
1108                 crp->crp_desc = crd->crd_next;
1109                 kmem_cache_free(cryptodesc_zone, crd);
1110         }
1111         kmem_cache_free(cryptop_zone, crp);
1112 }
1113
1114 /*
1115  * Acquire a set of crypto descriptors.
1116  */
1117 struct cryptop *
1118 crypto_getreq(int num)
1119 {
1120         struct cryptodesc *crd;
1121         struct cryptop *crp;
1122
1123         crp = kmem_cache_alloc(cryptop_zone, SLAB_ATOMIC);
1124         if (crp != NULL) {
1125                 memset(crp, 0, sizeof(*crp));
1126                 INIT_LIST_HEAD(&crp->crp_next);
1127                 init_waitqueue_head(&crp->crp_waitq);
1128                 while (num--) {
1129                         crd = kmem_cache_alloc(cryptodesc_zone, SLAB_ATOMIC);
1130                         if (crd == NULL) {
1131                                 crypto_freereq(crp);
1132                                 return NULL;
1133                         }
1134                         memset(crd, 0, sizeof(*crd));
1135                         crd->crd_next = crp->crp_desc;
1136                         crp->crp_desc = crd;
1137                 }
1138         }
1139         return crp;
1140 }
1141
1142 /*
1143  * Invoke the callback on behalf of the driver.
1144  */
1145 void
1146 crypto_done(struct cryptop *crp)
1147 {
1148         unsigned long q_flags;
1149
1150         dprintk("%s()\n", __FUNCTION__);
1151         if ((crp->crp_flags & CRYPTO_F_DONE) == 0) {
1152                 crp->crp_flags |= CRYPTO_F_DONE;
1153                 CRYPTO_Q_LOCK();
1154                 crypto_q_cnt--;
1155                 CRYPTO_Q_UNLOCK();
1156         } else
1157                 printk("crypto: crypto_done op already done, flags 0x%x",
1158                                 crp->crp_flags);
1159         if (crp->crp_etype != 0)
1160                 cryptostats.cs_errs++;
1161         /*
1162          * CBIMM means unconditionally do the callback immediately;
1163          * CBIFSYNC means do the callback immediately only if the
1164          * operation was done synchronously.  Both are used to avoid
1165          * doing extraneous context switches; the latter is mostly
1166          * used with the software crypto driver.
1167          */
1168         if ((crp->crp_flags & CRYPTO_F_CBIMM) ||
1169             ((crp->crp_flags & CRYPTO_F_CBIFSYNC) &&
1170              (CRYPTO_SESID2CAPS(crp->crp_sid) & CRYPTOCAP_F_SYNC))) {
1171                 /*
1172                  * Do the callback directly.  This is ok when the
1173                  * callback routine does very little (e.g. the
1174                  * /dev/crypto callback method just does a wakeup).
1175                  */
1176                 crp->crp_callback(crp);
1177         } else {
1178                 unsigned long r_flags;
1179                 /*
1180                  * Normal case; queue the callback for the thread.
1181                  */
1182                 CRYPTO_RETQ_LOCK();
1183                 wake_up_interruptible(&cryptoretproc_wait);/* shared wait channel */
1184                 TAILQ_INSERT_TAIL(&crp_ret_q, crp, crp_next);
1185                 CRYPTO_RETQ_UNLOCK();
1186         }
1187 }
1188
1189 /*
1190  * Invoke the callback on behalf of the driver.
1191  */
1192 void
1193 crypto_kdone(struct cryptkop *krp)
1194 {
1195         struct cryptocap *cap;
1196         unsigned long d_flags;
1197
1198         if ((krp->krp_flags & CRYPTO_KF_DONE) != 0)
1199                 printk("crypto: crypto_kdone op already done, flags 0x%x",
1200                                 krp->krp_flags);
1201         krp->krp_flags |= CRYPTO_KF_DONE;
1202         if (krp->krp_status != 0)
1203                 cryptostats.cs_kerrs++;
1204
1205         CRYPTO_DRIVER_LOCK();
1206         /* XXX: What if driver is loaded in the meantime? */
1207         if (krp->krp_hid < crypto_drivers_num) {
1208                 cap = &crypto_drivers[krp->krp_hid];
1209                 cap->cc_koperations--;
1210                 KASSERT(cap->cc_koperations >= 0, ("cc_koperations < 0"));
1211                 if (cap->cc_flags & CRYPTOCAP_F_CLEANUP)
1212                         crypto_remove(cap);
1213         }
1214         CRYPTO_DRIVER_UNLOCK();
1215
1216         /*
1217          * CBIMM means unconditionally do the callback immediately;
1218          * This is used to avoid doing extraneous context switches
1219          */
1220         if ((krp->krp_flags & CRYPTO_KF_CBIMM)) {
1221                 /*
1222                  * Do the callback directly.  This is ok when the
1223                  * callback routine does very little (e.g. the
1224                  * /dev/crypto callback method just does a wakeup).
1225                  */
1226                 krp->krp_callback(krp);
1227         } else {
1228                 unsigned long r_flags;
1229                 /*
1230                  * Normal case; queue the callback for the thread.
1231                  */
1232                 CRYPTO_RETQ_LOCK();
1233                 wake_up_interruptible(&cryptoretproc_wait);/* shared wait channel */
1234                 TAILQ_INSERT_TAIL(&crp_ret_kq, krp, krp_next);
1235                 CRYPTO_RETQ_UNLOCK();
1236         }
1237 }
1238
1239 int
1240 crypto_getfeat(int *featp)
1241 {
1242         int hid, kalg, feat = 0;
1243         unsigned long d_flags;
1244
1245         CRYPTO_DRIVER_LOCK();
1246         for (hid = 0; hid < crypto_drivers_num; hid++) {
1247                 const struct cryptocap *cap = &crypto_drivers[hid];
1248
1249                 if ((cap->cc_flags & CRYPTOCAP_F_SOFTWARE) &&
1250                     !crypto_devallowsoft) {
1251                         continue;
1252                 }
1253                 for (kalg = 0; kalg < CRK_ALGORITHM_MAX; kalg++)
1254                         if (cap->cc_kalg[kalg] & CRYPTO_ALG_FLAG_SUPPORTED)
1255                                 feat |=  1 << kalg;
1256         }
1257         CRYPTO_DRIVER_UNLOCK();
1258         *featp = feat;
1259         return (0);
1260 }
1261
1262 /*
1263  * Crypto thread, dispatches crypto requests.
1264  */
1265 static int
1266 crypto_proc(void *arg)
1267 {
1268         struct cryptop *crp, *submit;
1269         struct cryptkop *krp, *krpp;
1270         struct cryptocap *cap;
1271         u_int32_t hid;
1272         int result, hint;
1273         unsigned long q_flags;
1274         int loopcount = 0;
1275
1276         set_current_state(TASK_INTERRUPTIBLE);
1277
1278         CRYPTO_Q_LOCK();
1279         for (;;) {
1280                 /*
1281                  * we need to make sure we don't get into a busy loop with nothing
1282                  * to do,  the two crypto_all_*blocked vars help us find out when
1283                  * we are all full and can do nothing on any driver or Q.  If so we
1284                  * wait for an unblock.
1285                  */
1286                 crypto_all_qblocked  = !list_empty(&crp_q);
1287
1288                 /*
1289                  * Find the first element in the queue that can be
1290                  * processed and look-ahead to see if multiple ops
1291                  * are ready for the same driver.
1292                  */
1293                 submit = NULL;
1294                 hint = 0;
1295                 list_for_each_entry(crp, &crp_q, crp_next) {
1296                         hid = CRYPTO_SESID2HID(crp->crp_sid);
1297                         cap = crypto_checkdriver(hid);
1298                         /*
1299                          * Driver cannot disappear when there is an active
1300                          * session.
1301                          */
1302                         KASSERT(cap != NULL, ("%s:%u Driver disappeared.",
1303                             __func__, __LINE__));
1304                         if (cap == NULL || cap->cc_dev == NULL) {
1305                                 /* Op needs to be migrated, process it. */
1306                                 if (submit == NULL)
1307                                         submit = crp;
1308                                 break;
1309                         }
1310                         if (!cap->cc_qblocked) {
1311                                 if (submit != NULL) {
1312                                         /*
1313                                          * We stop on finding another op,
1314                                          * regardless whether its for the same
1315                                          * driver or not.  We could keep
1316                                          * searching the queue but it might be
1317                                          * better to just use a per-driver
1318                                          * queue instead.
1319                                          */
1320                                         if (CRYPTO_SESID2HID(submit->crp_sid) == hid)
1321                                                 hint = CRYPTO_HINT_MORE;
1322                                         break;
1323                                 } else {
1324                                         submit = crp;
1325                                         if ((submit->crp_flags & CRYPTO_F_BATCH) == 0)
1326                                                 break;
1327                                         /* keep scanning for more are q'd */
1328                                 }
1329                         }
1330                 }
1331                 if (submit != NULL) {
1332                         hid = CRYPTO_SESID2HID(submit->crp_sid);
1333                         crypto_all_qblocked = 0;
1334                         list_del(&submit->crp_next);
1335                         crypto_drivers[hid].cc_unqblocked = 1;
1336                         cap = crypto_checkdriver(hid);
1337                         CRYPTO_Q_UNLOCK();
1338                         KASSERT(cap != NULL, ("%s:%u Driver disappeared.",
1339                             __func__, __LINE__));
1340                         result = crypto_invoke(cap, submit, hint);
1341                         CRYPTO_Q_LOCK();
1342                         if (result == ERESTART) {
1343                                 /*
1344                                  * The driver ran out of resources, mark the
1345                                  * driver ``blocked'' for cryptop's and put
1346                                  * the request back in the queue.  It would
1347                                  * best to put the request back where we got
1348                                  * it but that's hard so for now we put it
1349                                  * at the front.  This should be ok; putting
1350                                  * it at the end does not work.
1351                                  */
1352                                 /* XXX validate sid again? */
1353                                 list_add(&submit->crp_next, &crp_q);
1354                                 cryptostats.cs_blocks++;
1355                                 if (crypto_drivers[hid].cc_unqblocked)
1356                                         crypto_drivers[hid].cc_qblocked=0;
1357                                 crypto_drivers[hid].cc_unqblocked=0;
1358                         }
1359                         crypto_drivers[hid].cc_unqblocked = 0;
1360                 }
1361
1362                 crypto_all_kqblocked = !list_empty(&crp_kq);
1363
1364                 /* As above, but for key ops */
1365                 krp = NULL;
1366                 list_for_each_entry(krpp, &crp_kq, krp_next) {
1367                         cap = crypto_checkdriver(krpp->krp_hid);
1368                         if (cap == NULL || cap->cc_dev == NULL) {
1369                                 /*
1370                                  * Operation needs to be migrated, invalidate
1371                                  * the assigned device so it will reselect a
1372                                  * new one below.  Propagate the original
1373                                  * crid selection flags if supplied.
1374                                  */
1375                                 krp->krp_hid = krp->krp_crid &
1376                                     (CRYPTOCAP_F_SOFTWARE|CRYPTOCAP_F_HARDWARE);
1377                                 if (krp->krp_hid == 0)
1378                                         krp->krp_hid =
1379                                     CRYPTOCAP_F_SOFTWARE|CRYPTOCAP_F_HARDWARE;
1380                                 break;
1381                         }
1382                         if (!cap->cc_kqblocked) {
1383                                 krp = krpp;
1384                                 break;
1385                         }
1386                 }
1387                 if (krp != NULL) {
1388                         crypto_all_kqblocked = 0;
1389                         list_del(&krp->krp_next);
1390                         crypto_drivers[krp->krp_hid].cc_kqblocked = 1;
1391                         CRYPTO_Q_UNLOCK();
1392                         result = crypto_kinvoke(krp, krp->krp_hid);
1393                         CRYPTO_Q_LOCK();
1394                         if (result == ERESTART) {
1395                                 /*
1396                                  * The driver ran out of resources, mark the
1397                                  * driver ``blocked'' for cryptkop's and put
1398                                  * the request back in the queue.  It would
1399                                  * best to put the request back where we got
1400                                  * it but that's hard so for now we put it
1401                                  * at the front.  This should be ok; putting
1402                                  * it at the end does not work.
1403                                  */
1404                                 /* XXX validate sid again? */
1405                                 list_add(&krp->krp_next, &crp_kq);
1406                                 cryptostats.cs_kblocks++;
1407                         } else
1408                                 crypto_drivers[krp->krp_hid].cc_kqblocked = 0;
1409                 }
1410
1411                 if (submit == NULL && krp == NULL) {
1412                         /*
1413                          * Nothing more to be processed.  Sleep until we're
1414                          * woken because there are more ops to process.
1415                          * This happens either by submission or by a driver
1416                          * becoming unblocked and notifying us through
1417                          * crypto_unblock.  Note that when we wakeup we
1418                          * start processing each queue again from the
1419                          * front. It's not clear that it's important to
1420                          * preserve this ordering since ops may finish
1421                          * out of order if dispatched to different devices
1422                          * and some become blocked while others do not.
1423                          */
1424                         dprintk("%s - sleeping (qe=%d qb=%d kqe=%d kqb=%d)\n",
1425                                         __FUNCTION__,
1426                                         list_empty(&crp_q), crypto_all_qblocked,
1427                                         list_empty(&crp_kq), crypto_all_kqblocked);
1428                         loopcount = 0;
1429                         CRYPTO_Q_UNLOCK();
1430                         wait_event_interruptible(cryptoproc_wait,
1431                                         !(list_empty(&crp_q) || crypto_all_qblocked) ||
1432                                         !(list_empty(&crp_kq) || crypto_all_kqblocked) ||
1433                                         kthread_should_stop());
1434                         if (signal_pending (current)) {
1435 #if LINUX_VERSION_CODE < KERNEL_VERSION(2,6,0)
1436                                 spin_lock_irq(&current->sigmask_lock);
1437 #endif
1438                                 flush_signals(current);
1439 #if LINUX_VERSION_CODE < KERNEL_VERSION(2,6,0)
1440                                 spin_unlock_irq(&current->sigmask_lock);
1441 #endif
1442                         }
1443                         CRYPTO_Q_LOCK();
1444                         dprintk("%s - awake\n", __FUNCTION__);
1445                         if (kthread_should_stop())
1446                                 break;
1447                         cryptostats.cs_intrs++;
1448                 } else if (loopcount > crypto_max_loopcount) {
1449                         /*
1450                          * Give other processes a chance to run if we've 
1451                          * been using the CPU exclusively for a while.
1452                          */
1453                         loopcount = 0;
1454                         CRYPTO_Q_UNLOCK();
1455                         schedule();
1456                         CRYPTO_Q_LOCK();
1457                 }
1458                 loopcount++;
1459         }
1460         CRYPTO_Q_UNLOCK();
1461         return 0;
1462 }
1463
1464 /*
1465  * Crypto returns thread, does callbacks for processed crypto requests.
1466  * Callbacks are done here, rather than in the crypto drivers, because
1467  * callbacks typically are expensive and would slow interrupt handling.
1468  */
1469 static int
1470 crypto_ret_proc(void *arg)
1471 {
1472         struct cryptop *crpt;
1473         struct cryptkop *krpt;
1474         unsigned long  r_flags;
1475
1476         set_current_state(TASK_INTERRUPTIBLE);
1477
1478         CRYPTO_RETQ_LOCK();
1479         for (;;) {
1480                 /* Harvest return q's for completed ops */
1481                 crpt = NULL;
1482                 if (!list_empty(&crp_ret_q))
1483                         crpt = list_entry(crp_ret_q.next, typeof(*crpt), crp_next);
1484                 if (crpt != NULL)
1485                         list_del(&crpt->crp_next);
1486
1487                 krpt = NULL;
1488                 if (!list_empty(&crp_ret_kq))
1489                         krpt = list_entry(crp_ret_kq.next, typeof(*krpt), krp_next);
1490                 if (krpt != NULL)
1491                         list_del(&krpt->krp_next);
1492
1493                 if (crpt != NULL || krpt != NULL) {
1494                         CRYPTO_RETQ_UNLOCK();
1495                         /*
1496                          * Run callbacks unlocked.
1497                          */
1498                         if (crpt != NULL)
1499                                 crpt->crp_callback(crpt);
1500                         if (krpt != NULL)
1501                                 krpt->krp_callback(krpt);
1502                         CRYPTO_RETQ_LOCK();
1503                 } else {
1504                         /*
1505                          * Nothing more to be processed.  Sleep until we're
1506                          * woken because there are more returns to process.
1507                          */
1508                         dprintk("%s - sleeping\n", __FUNCTION__);
1509                         CRYPTO_RETQ_UNLOCK();
1510                         wait_event_interruptible(cryptoretproc_wait,
1511                                         !list_empty(&crp_ret_q) ||
1512                                         !list_empty(&crp_ret_kq) ||
1513                                         kthread_should_stop());
1514                         if (signal_pending (current)) {
1515 #if LINUX_VERSION_CODE < KERNEL_VERSION(2,6,0)
1516                                 spin_lock_irq(&current->sigmask_lock);
1517 #endif
1518                                 flush_signals(current);
1519 #if LINUX_VERSION_CODE < KERNEL_VERSION(2,6,0)
1520                                 spin_unlock_irq(&current->sigmask_lock);
1521 #endif
1522                         }
1523                         CRYPTO_RETQ_LOCK();
1524                         dprintk("%s - awake\n", __FUNCTION__);
1525                         if (kthread_should_stop()) {
1526                                 dprintk("%s - EXITING!\n", __FUNCTION__);
1527                                 break;
1528                         }
1529                         cryptostats.cs_rets++;
1530                 }
1531         }
1532         CRYPTO_RETQ_UNLOCK();
1533         return 0;
1534 }
1535
1536
1537 #if 0 /* should put this into /proc or something */
1538 static void
1539 db_show_drivers(void)
1540 {
1541         int hid;
1542
1543         db_printf("%12s %4s %4s %8s %2s %2s\n"
1544                 , "Device"
1545                 , "Ses"
1546                 , "Kops"
1547                 , "Flags"
1548                 , "QB"
1549                 , "KB"
1550         );
1551         for (hid = 0; hid < crypto_drivers_num; hid++) {
1552                 const struct cryptocap *cap = &crypto_drivers[hid];
1553                 if (cap->cc_dev == NULL)
1554                         continue;
1555                 db_printf("%-12s %4u %4u %08x %2u %2u\n"
1556                     , device_get_nameunit(cap->cc_dev)
1557                     , cap->cc_sessions
1558                     , cap->cc_koperations
1559                     , cap->cc_flags
1560                     , cap->cc_qblocked
1561                     , cap->cc_kqblocked
1562                 );
1563         }
1564 }
1565
1566 DB_SHOW_COMMAND(crypto, db_show_crypto)
1567 {
1568         struct cryptop *crp;
1569
1570         db_show_drivers();
1571         db_printf("\n");
1572
1573         db_printf("%4s %8s %4s %4s %4s %4s %8s %8s\n",
1574             "HID", "Caps", "Ilen", "Olen", "Etype", "Flags",
1575             "Desc", "Callback");
1576         TAILQ_FOREACH(crp, &crp_q, crp_next) {
1577                 db_printf("%4u %08x %4u %4u %4u %04x %8p %8p\n"
1578                     , (int) CRYPTO_SESID2HID(crp->crp_sid)
1579                     , (int) CRYPTO_SESID2CAPS(crp->crp_sid)
1580                     , crp->crp_ilen, crp->crp_olen
1581                     , crp->crp_etype
1582                     , crp->crp_flags
1583                     , crp->crp_desc
1584                     , crp->crp_callback
1585                 );
1586         }
1587         if (!TAILQ_EMPTY(&crp_ret_q)) {
1588                 db_printf("\n%4s %4s %4s %8s\n",
1589                     "HID", "Etype", "Flags", "Callback");
1590                 TAILQ_FOREACH(crp, &crp_ret_q, crp_next) {
1591                         db_printf("%4u %4u %04x %8p\n"
1592                             , (int) CRYPTO_SESID2HID(crp->crp_sid)
1593                             , crp->crp_etype
1594                             , crp->crp_flags
1595                             , crp->crp_callback
1596                         );
1597                 }
1598         }
1599 }
1600
1601 DB_SHOW_COMMAND(kcrypto, db_show_kcrypto)
1602 {
1603         struct cryptkop *krp;
1604
1605         db_show_drivers();
1606         db_printf("\n");
1607
1608         db_printf("%4s %5s %4s %4s %8s %4s %8s\n",
1609             "Op", "Status", "#IP", "#OP", "CRID", "HID", "Callback");
1610         TAILQ_FOREACH(krp, &crp_kq, krp_next) {
1611                 db_printf("%4u %5u %4u %4u %08x %4u %8p\n"
1612                     , krp->krp_op
1613                     , krp->krp_status
1614                     , krp->krp_iparams, krp->krp_oparams
1615                     , krp->krp_crid, krp->krp_hid
1616                     , krp->krp_callback
1617                 );
1618         }
1619         if (!TAILQ_EMPTY(&crp_ret_q)) {
1620                 db_printf("%4s %5s %8s %4s %8s\n",
1621                     "Op", "Status", "CRID", "HID", "Callback");
1622                 TAILQ_FOREACH(krp, &crp_ret_kq, krp_next) {
1623                         db_printf("%4u %5u %08x %4u %8p\n"
1624                             , krp->krp_op
1625                             , krp->krp_status
1626                             , krp->krp_crid, krp->krp_hid
1627                             , krp->krp_callback
1628                         );
1629                 }
1630         }
1631 }
1632 #endif
1633
1634
1635 static int
1636 crypto_init(void)
1637 {
1638         int error;
1639         unsigned long cpu;
1640
1641         dprintk("%s(%p)\n", __FUNCTION__, (void *) crypto_init);
1642
1643         if (crypto_initted)
1644                 return 0;
1645         crypto_initted = 1;
1646
1647         spin_lock_init(&crypto_drivers_lock);
1648         spin_lock_init(&crypto_q_lock);
1649         spin_lock_init(&crypto_ret_q_lock);
1650
1651         cryptop_zone = kmem_cache_create("cryptop", sizeof(struct cryptop),
1652                                        0, SLAB_HWCACHE_ALIGN, NULL
1653 #if LINUX_VERSION_CODE < KERNEL_VERSION(2,6,23)
1654                                        , NULL
1655 #endif
1656                                         );
1657
1658         cryptodesc_zone = kmem_cache_create("cryptodesc", sizeof(struct cryptodesc),
1659                                        0, SLAB_HWCACHE_ALIGN, NULL
1660 #if LINUX_VERSION_CODE < KERNEL_VERSION(2,6,23)
1661                                        , NULL
1662 #endif
1663                                         );
1664
1665         if (cryptodesc_zone == NULL || cryptop_zone == NULL) {
1666                 printk("crypto: crypto_init cannot setup crypto zones\n");
1667                 error = ENOMEM;
1668                 goto bad;
1669         }
1670
1671         crypto_drivers_num = CRYPTO_DRIVERS_INITIAL;
1672         crypto_drivers = kmalloc(crypto_drivers_num * sizeof(struct cryptocap),
1673                         GFP_KERNEL);
1674         if (crypto_drivers == NULL) {
1675                 printk("crypto: crypto_init cannot setup crypto drivers\n");
1676                 error = ENOMEM;
1677                 goto bad;
1678         }
1679
1680         memset(crypto_drivers, 0, crypto_drivers_num * sizeof(struct cryptocap));
1681
1682         ocf_for_each_cpu(cpu) {
1683                 cryptoproc[cpu] = kthread_create(crypto_proc, (void *) cpu,
1684                                                                         "ocf_%d", (int) cpu);
1685                 if (IS_ERR(cryptoproc[cpu])) {
1686                         error = PTR_ERR(cryptoproc[cpu]);
1687                         printk("crypto: crypto_init cannot start crypto thread; error %d",
1688                                 error);
1689                         goto bad;
1690                 }
1691                 kthread_bind(cryptoproc[cpu], cpu);
1692                 wake_up_process(cryptoproc[cpu]);
1693
1694                 cryptoretproc[cpu] = kthread_create(crypto_ret_proc, (void *) cpu,
1695                                                                         "ocf_ret_%d", (int) cpu);
1696                 if (IS_ERR(cryptoretproc[cpu])) {
1697                         error = PTR_ERR(cryptoretproc[cpu]);
1698                         printk("crypto: crypto_init cannot start cryptoret thread; error %d",
1699                                         error);
1700                         goto bad;
1701                 }
1702                 kthread_bind(cryptoretproc[cpu], cpu);
1703                 wake_up_process(cryptoretproc[cpu]);
1704         }
1705
1706         return 0;
1707 bad:
1708         crypto_exit();
1709         return error;
1710 }
1711
1712
1713 static void
1714 crypto_exit(void)
1715 {
1716         int cpu;
1717
1718         dprintk("%s()\n", __FUNCTION__);
1719
1720         /*
1721          * Terminate any crypto threads.
1722          */
1723         ocf_for_each_cpu(cpu) {
1724                 kthread_stop(cryptoproc[cpu]);
1725                 kthread_stop(cryptoretproc[cpu]);
1726         }
1727
1728         /* 
1729          * Reclaim dynamically allocated resources.
1730          */
1731         if (crypto_drivers != NULL)
1732                 kfree(crypto_drivers);
1733
1734         if (cryptodesc_zone != NULL)
1735                 kmem_cache_destroy(cryptodesc_zone);
1736         if (cryptop_zone != NULL)
1737                 kmem_cache_destroy(cryptop_zone);
1738 }
1739
1740
1741 EXPORT_SYMBOL(crypto_newsession);
1742 EXPORT_SYMBOL(crypto_freesession);
1743 EXPORT_SYMBOL(crypto_get_driverid);
1744 EXPORT_SYMBOL(crypto_kregister);
1745 EXPORT_SYMBOL(crypto_register);
1746 EXPORT_SYMBOL(crypto_unregister);
1747 EXPORT_SYMBOL(crypto_unregister_all);
1748 EXPORT_SYMBOL(crypto_unblock);
1749 EXPORT_SYMBOL(crypto_dispatch);
1750 EXPORT_SYMBOL(crypto_kdispatch);
1751 EXPORT_SYMBOL(crypto_freereq);
1752 EXPORT_SYMBOL(crypto_getreq);
1753 EXPORT_SYMBOL(crypto_done);
1754 EXPORT_SYMBOL(crypto_kdone);
1755 EXPORT_SYMBOL(crypto_getfeat);
1756 EXPORT_SYMBOL(crypto_userasymcrypto);
1757 EXPORT_SYMBOL(crypto_getcaps);
1758 EXPORT_SYMBOL(crypto_find_driver);
1759 EXPORT_SYMBOL(crypto_find_device_byhid);
1760
1761 module_init(crypto_init);
1762 module_exit(crypto_exit);
1763
1764 MODULE_LICENSE("BSD");
1765 MODULE_AUTHOR("David McCullough <david_mccullough@mcafee.com>");
1766 MODULE_DESCRIPTION("OCF (OpenBSD Cryptographic Framework)");