ef87d2014ab0513ea4b753bc70a0ff8e161292e0
[openwrt.git] / target / linux / atheros-2.6 / files / drivers / mtd / devices / spiflash.c
1
2 /*
3  * MTD driver for the SPI Flash Memory support.
4  *
5  * Copyright (c) 2005-2006 Atheros Communications Inc.
6  * Copyright (C) 2006-2007 FON Technology, SL.
7  * Copyright (C) 2006-2007 Imre Kaloz <kaloz@openwrt.org>
8  * Copyright (C) 2006-2007 Felix Fietkau <nbd@openwrt.org>
9  *
10  * This code is free software; you can redistribute it and/or modify
11  * it under the terms of the GNU General Public License version 2 as
12  * published by the Free Software Foundation.
13  *
14  */
15
16 /*===========================================================================
17 ** !!!!  VERY IMPORTANT NOTICE !!!!  FLASH DATA STORED IN LITTLE ENDIAN FORMAT
18 **
19 ** This module contains the Serial Flash access routines for the Atheros SOC.
20 ** The Atheros SOC integrates a SPI flash controller that is used to access
21 ** serial flash parts. The SPI flash controller executes in "Little Endian"
22 ** mode. THEREFORE, all WRITES and READS from the MIPS CPU must be
23 ** BYTESWAPPED! The SPI Flash controller hardware by default performs READ
24 ** ONLY byteswapping when accessed via the SPI Flash Alias memory region
25 ** (Physical Address 0x0800_0000 - 0x0fff_ffff). The data stored in the
26 ** flash sectors is stored in "Little Endian" format.
27 **
28 ** The spiflash_write() routine performs byteswapping on all write
29 ** operations.
30 **===========================================================================*/
31
32 #include <linux/kernel.h>
33 #include <linux/module.h>
34 #include <linux/types.h>
35 #include <linux/version.h>
36 #include <linux/errno.h>
37 #include <linux/slab.h>
38 #include <linux/mtd/mtd.h>
39 #include <linux/mtd/partitions.h>
40 #include <linux/platform_device.h>
41 #include <linux/squashfs_fs.h>
42 #include <linux/root_dev.h>
43 #include <linux/delay.h>
44 #include <asm/delay.h>
45 #include <asm/io.h>
46 #include "spiflash.h"
47
48 #ifndef __BIG_ENDIAN
49 #error This driver currently only works with big endian CPU.
50 #endif
51
52 #define MAX_PARTS 32
53
54 #define SPIFLASH "spiflash: "
55
56 #define MIN(a,b)        ((a) < (b) ? (a) : (b))
57
58 #define busy_wait(condition, wait) \
59         do { \
60                 while (condition) { \
61                         spin_unlock_bh(&spidata->mutex); \
62                         if (wait > 1) \
63                                 msleep(wait); \
64                         else if ((wait == 1) && need_resched()) \
65                                 schedule(); \
66                         else \
67                                 udelay(1); \
68                         spin_lock_bh(&spidata->mutex); \
69                 } \
70         } while (0)
71                 
72
73 static __u32 spiflash_regread32(int reg);
74 static void spiflash_regwrite32(int reg, __u32 data);
75 static __u32 spiflash_sendcmd (int op, u32 addr);
76
77 int __init spiflash_init (void);
78 void __exit spiflash_exit (void);
79 static int spiflash_probe_chip (void);
80 static int spiflash_erase (struct mtd_info *mtd,struct erase_info *instr);
81 static int spiflash_read (struct mtd_info *mtd, loff_t from,size_t len,size_t *retlen,u_char *buf);
82 static int spiflash_write (struct mtd_info *mtd,loff_t to,size_t len,size_t *retlen,const u_char *buf);
83
84 /* Flash configuration table */
85 struct flashconfig {
86     __u32 byte_cnt;
87     __u32 sector_cnt;
88     __u32 sector_size;
89     __u32 cs_addrmask;
90 } flashconfig_tbl[MAX_FLASH] =
91     {
92         { 0, 0, 0, 0},
93         { STM_1MB_BYTE_COUNT, STM_1MB_SECTOR_COUNT, STM_1MB_SECTOR_SIZE, 0x0},
94         { STM_2MB_BYTE_COUNT, STM_2MB_SECTOR_COUNT, STM_2MB_SECTOR_SIZE, 0x0},
95         { STM_4MB_BYTE_COUNT, STM_4MB_SECTOR_COUNT, STM_4MB_SECTOR_SIZE, 0x0},
96         { STM_8MB_BYTE_COUNT, STM_8MB_SECTOR_COUNT, STM_8MB_SECTOR_SIZE, 0x0},
97         { STM_16MB_BYTE_COUNT, STM_16MB_SECTOR_COUNT, STM_16MB_SECTOR_SIZE, 0x0}
98     };
99
100 /* Mapping of generic opcodes to STM serial flash opcodes */
101 #define SPI_WRITE_ENABLE    0
102 #define SPI_WRITE_DISABLE   1
103 #define SPI_RD_STATUS       2
104 #define SPI_WR_STATUS       3
105 #define SPI_RD_DATA         4
106 #define SPI_FAST_RD_DATA    5
107 #define SPI_PAGE_PROGRAM    6
108 #define SPI_SECTOR_ERASE    7
109 #define SPI_BULK_ERASE      8
110 #define SPI_DEEP_PWRDOWN    9
111 #define SPI_RD_SIG          10
112 #define SPI_MAX_OPCODES     11
113
114 struct opcodes {
115     __u16 code;
116     __s8 tx_cnt;
117     __s8 rx_cnt;
118 } stm_opcodes[] = {
119         {STM_OP_WR_ENABLE, 1, 0},
120         {STM_OP_WR_DISABLE, 1, 0},
121         {STM_OP_RD_STATUS, 1, 1},
122         {STM_OP_WR_STATUS, 1, 0},
123         {STM_OP_RD_DATA, 4, 4},
124         {STM_OP_FAST_RD_DATA, 5, 0},
125         {STM_OP_PAGE_PGRM, 8, 0},
126         {STM_OP_SECTOR_ERASE, 4, 0},
127         {STM_OP_BULK_ERASE, 1, 0},
128         {STM_OP_DEEP_PWRDOWN, 1, 0},
129         {STM_OP_RD_SIG, 4, 1},
130 };
131
132 /* Driver private data structure */
133 struct spiflash_data {
134         struct  mtd_info       *mtd;    
135         struct  mtd_partition  *parsed_parts;     /* parsed partitions */
136         void    *readaddr; /* memory mapped data for read  */
137         void    *mmraddr;  /* memory mapped register space */
138         wait_queue_head_t wq;
139         spinlock_t mutex;
140         int state;
141 };
142 enum {
143         FL_READY,
144         FL_READING,
145         FL_ERASING,
146         FL_WRITING
147 };
148
149 static struct spiflash_data *spidata;
150
151 extern int parse_redboot_partitions(struct mtd_info *master, struct mtd_partition **pparts);
152
153 /***************************************************************************************************/
154
155 static __u32
156 spiflash_regread32(int reg)
157 {
158         volatile __u32 *data = (__u32 *)(spidata->mmraddr + reg);
159
160         return (*data);
161 }
162
163 static void 
164 spiflash_regwrite32(int reg, __u32 data)
165 {
166         volatile __u32 *addr = (__u32 *)(spidata->mmraddr + reg);
167
168         *addr = data;
169         return;
170 }
171
172
173 static __u32 
174 spiflash_sendcmd (int op, u32 addr)
175 {
176          u32 reg;
177          u32 mask;
178         struct opcodes *ptr_opcode;
179
180         ptr_opcode = &stm_opcodes[op];
181         busy_wait((reg = spiflash_regread32(SPI_FLASH_CTL)) & SPI_CTL_BUSY, 0);
182         spiflash_regwrite32(SPI_FLASH_OPCODE, ((u32) ptr_opcode->code) | (addr << 8));
183
184         reg = (reg & ~SPI_CTL_TX_RX_CNT_MASK) | ptr_opcode->tx_cnt |
185                 (ptr_opcode->rx_cnt << 4) | SPI_CTL_START;
186
187         spiflash_regwrite32(SPI_FLASH_CTL, reg);
188         busy_wait(spiflash_regread32(SPI_FLASH_CTL) & SPI_CTL_BUSY, 0);
189  
190         if (!ptr_opcode->rx_cnt)
191                 return 0;
192
193         reg = (__u32) spiflash_regread32(SPI_FLASH_DATA);
194
195         switch (ptr_opcode->rx_cnt) {
196         case 1:
197                         mask = 0x000000ff;
198                         break;
199         case 2:
200                         mask = 0x0000ffff;
201                         break;
202         case 3:
203                         mask = 0x00ffffff;
204                         break;
205         default:
206                         mask = 0xffffffff;
207                         break;
208         }
209         reg &= mask;
210
211         return reg;
212 }
213
214
215
216 /* Probe SPI flash device
217  * Function returns 0 for failure.
218  * and flashconfig_tbl array index for success.
219  */
220 static int 
221 spiflash_probe_chip (void)
222 {
223         __u32 sig;
224         int flash_size;
225         
226         /* Read the signature on the flash device */
227         spin_lock_bh(&spidata->mutex);
228         sig = spiflash_sendcmd(SPI_RD_SIG, 0);
229         spin_unlock_bh(&spidata->mutex);
230
231         switch (sig) {
232         case STM_8MBIT_SIGNATURE:
233                 flash_size = FLASH_1MB;
234                 break;
235         case STM_16MBIT_SIGNATURE:
236                 flash_size = FLASH_2MB;
237                 break;
238         case STM_32MBIT_SIGNATURE:
239                 flash_size = FLASH_4MB;
240                 break;
241         case STM_64MBIT_SIGNATURE:
242                 flash_size = FLASH_8MB;
243                 break;
244         case STM_128MBIT_SIGNATURE:
245                 flash_size = FLASH_16MB;
246                 break;
247         default:
248                 printk (KERN_WARNING SPIFLASH "Read of flash device signature failed!\n");
249                 return (0);
250         }
251
252         return (flash_size);
253 }
254
255
256 /* wait until the flash chip is ready and grab a lock */
257 static int spiflash_wait_ready(int state)
258 {
259         DECLARE_WAITQUEUE(wait, current);
260
261 retry:
262         spin_lock_bh(&spidata->mutex);
263         if (spidata->state != FL_READY) {
264                 set_current_state(TASK_UNINTERRUPTIBLE);
265                 add_wait_queue(&spidata->wq, &wait);
266                 spin_unlock_bh(&spidata->mutex);
267                 schedule();
268                 remove_wait_queue(&spidata->wq, &wait);
269                 
270                 if(signal_pending(current))
271                         return 0;
272
273                 goto retry;
274         }
275         spidata->state = state;
276
277         return 1;
278 }
279
280 static inline void spiflash_done(void)
281 {
282         spidata->state = FL_READY;
283         spin_unlock_bh(&spidata->mutex);
284         wake_up(&spidata->wq);
285 }
286
287 static int 
288 spiflash_erase (struct mtd_info *mtd,struct erase_info *instr)
289 {
290         struct opcodes *ptr_opcode;
291         u32 temp, reg;
292
293         /* sanity checks */
294         if (instr->addr + instr->len > mtd->size) return (-EINVAL);
295
296         if (!spiflash_wait_ready(FL_ERASING))
297                 return -EINTR;
298
299         spiflash_sendcmd(SPI_WRITE_ENABLE, 0);
300         busy_wait((reg = spiflash_regread32(SPI_FLASH_CTL)) & SPI_CTL_BUSY, 0);
301         reg = spiflash_regread32(SPI_FLASH_CTL);
302
303         ptr_opcode = &stm_opcodes[SPI_SECTOR_ERASE];
304         temp = ((__u32)instr->addr << 8) | (__u32)(ptr_opcode->code);
305         spiflash_regwrite32(SPI_FLASH_OPCODE, temp);
306
307         reg = (reg & ~SPI_CTL_TX_RX_CNT_MASK) | ptr_opcode->tx_cnt | SPI_CTL_START;
308         spiflash_regwrite32(SPI_FLASH_CTL, reg);
309
310         /* this will take some time */
311         spin_unlock_bh(&spidata->mutex);
312         msleep(800);
313         spin_lock_bh(&spidata->mutex);
314         
315         busy_wait(spiflash_sendcmd(SPI_RD_STATUS, 0) & SPI_STATUS_WIP, 20);
316         spiflash_done();
317
318         instr->state = MTD_ERASE_DONE;
319         if (instr->callback) instr->callback (instr);
320
321         return 0;
322 }
323
324 static int 
325 spiflash_read (struct mtd_info *mtd, loff_t from,size_t len,size_t *retlen,u_char *buf)
326 {
327         u8 *read_addr;
328         
329         /* sanity checks */
330         if (!len) return (0);
331         if (from + len > mtd->size) return (-EINVAL);
332         
333         /* we always read len bytes */
334         *retlen = len;
335
336         if (!spiflash_wait_ready(FL_READING))
337                 return -EINTR;
338         read_addr = (u8 *)(spidata->readaddr + from);
339         memcpy(buf, read_addr, len);
340         spiflash_done();
341
342         return 0;
343 }
344
345 static int 
346 spiflash_write (struct mtd_info *mtd,loff_t to,size_t len,size_t *retlen,const u_char *buf)
347 {
348         u32 opcode, bytes_left;
349
350         *retlen = 0;
351
352         /* sanity checks */
353         if (!len) return (0);
354         if (to + len > mtd->size) return (-EINVAL);
355         
356         opcode = stm_opcodes[SPI_PAGE_PROGRAM].code;
357         bytes_left = len;
358         
359         do {
360                 u32 xact_len, reg, page_offset, spi_data = 0;
361
362                 xact_len = MIN(bytes_left, sizeof(__u32));
363
364                 /* 32-bit writes cannot span across a page boundary
365                  * (256 bytes). This types of writes require two page
366                  * program operations to handle it correctly. The STM part
367                  * will write the overflow data to the beginning of the
368                  * current page as opposed to the subsequent page.
369                  */
370                 page_offset = (to & (STM_PAGE_SIZE - 1)) + xact_len;
371
372                 if (page_offset > STM_PAGE_SIZE) {
373                         xact_len -= (page_offset - STM_PAGE_SIZE);
374                 }
375
376                 if (!spiflash_wait_ready(FL_WRITING))
377                         return -EINTR;
378
379                 spiflash_sendcmd(SPI_WRITE_ENABLE, 0);
380                 switch (xact_len) {
381                         case 1:
382                                 spi_data = (u32) ((u8) *buf);
383                                 break;
384                         case 2:
385                                 spi_data = (buf[1] << 8) | buf[0];
386                                 break;
387                         case 3:
388                                 spi_data = (buf[2] << 16) | (buf[1] << 8) | buf[0];
389                                 break;
390                         case 4:
391                                 spi_data = (buf[3] << 24) | (buf[2] << 16) | 
392                                                         (buf[1] << 8) | buf[0];
393                                 break;
394                         default:
395                                 spi_data = 0;
396                                 break;
397                 }
398
399                 spiflash_regwrite32(SPI_FLASH_DATA, spi_data);
400                 opcode = (opcode & SPI_OPCODE_MASK) | ((__u32)to << 8);
401                 spiflash_regwrite32(SPI_FLASH_OPCODE, opcode);
402
403                 reg = spiflash_regread32(SPI_FLASH_CTL);
404                 reg = (reg & ~SPI_CTL_TX_RX_CNT_MASK) | (xact_len + 4) | SPI_CTL_START;
405                 spiflash_regwrite32(SPI_FLASH_CTL, reg);
406
407                 /* give the chip some time before we start busy waiting */
408                 spin_unlock_bh(&spidata->mutex);
409                 schedule();
410                 spin_lock_bh(&spidata->mutex);
411
412                 busy_wait(spiflash_sendcmd(SPI_RD_STATUS, 0) & SPI_STATUS_WIP, 0);
413                 spiflash_done();
414
415                 bytes_left -= xact_len;
416                 to += xact_len;
417                 buf += xact_len;
418
419                 *retlen += xact_len;
420         } while (bytes_left != 0);
421
422         return 0;
423 }
424
425
426 #ifdef CONFIG_MTD_PARTITIONS
427 static const char *part_probe_types[] = { "cmdlinepart", "RedBoot", NULL };
428 #endif
429
430
431 static int spiflash_probe(struct platform_device *pdev)
432 {
433         int result = -1;
434         int index, num_parts;
435         struct mtd_info *mtd;
436
437         spidata->mmraddr = ioremap_nocache(SPI_FLASH_MMR, SPI_FLASH_MMR_SIZE);
438         spin_lock_init(&spidata->mutex);
439         init_waitqueue_head(&spidata->wq);
440         spidata->state = FL_READY;
441         
442         if (!spidata->mmraddr) {
443                 printk (KERN_WARNING SPIFLASH "Failed to map flash device\n");
444                 kfree(spidata);
445                 spidata = NULL;
446         }
447
448         mtd = kzalloc(sizeof(struct mtd_info), GFP_KERNEL);
449         if (!mtd) {
450                 kfree(spidata);
451                 return -ENXIO;
452         }
453         
454         if (!(index = spiflash_probe_chip())) {
455         printk (KERN_WARNING SPIFLASH "Found no serial flash device\n");
456                 goto error;
457         }
458
459         spidata->readaddr = ioremap_nocache(SPI_FLASH_READ, flashconfig_tbl[index].byte_cnt);
460         if (!spidata->readaddr) {
461                 printk (KERN_WARNING SPIFLASH "Failed to map flash device\n");
462                 goto error;
463         }
464
465         mtd->name = "spiflash";
466         mtd->type = MTD_NORFLASH;
467         mtd->flags = (MTD_CAP_NORFLASH|MTD_WRITEABLE);
468         mtd->size = flashconfig_tbl[index].byte_cnt;
469         mtd->erasesize = flashconfig_tbl[index].sector_size;
470         mtd->writesize = 1;
471         mtd->numeraseregions = 0;
472         mtd->eraseregions = NULL;
473         mtd->erase = spiflash_erase;
474         mtd->read = spiflash_read;
475         mtd->write = spiflash_write;
476         mtd->owner = THIS_MODULE;
477
478         /* parse redboot partitions */
479         num_parts = parse_mtd_partitions(mtd, part_probe_types, &spidata->parsed_parts, 0);
480         if (!num_parts)
481                 goto error;
482
483         result = add_mtd_partitions(mtd, spidata->parsed_parts, num_parts);
484         spidata->mtd = mtd;
485         
486         return (result);
487         
488 error:
489         kfree(mtd);
490         kfree(spidata);
491         return -ENXIO;
492 }
493
494 static int spiflash_remove (struct platform_device *pdev)
495 {
496         del_mtd_partitions (spidata->mtd);
497         kfree(spidata->mtd);
498         return 0;
499 }
500
501 struct platform_driver spiflash_driver = {
502         .driver.name = "spiflash",
503         .probe = spiflash_probe,
504         .remove = spiflash_remove,
505 };
506
507 int __init 
508 spiflash_init (void)
509 {
510         spidata = kmalloc(sizeof(struct spiflash_data), GFP_KERNEL);
511         if (!spidata)
512                 return (-ENXIO);
513
514         spin_lock_init(&spidata->mutex);
515         platform_driver_register(&spiflash_driver);
516
517         return 0;
518 }
519
520 void __exit 
521 spiflash_exit (void)
522 {
523         kfree(spidata);
524 }
525
526 module_init (spiflash_init);
527 module_exit (spiflash_exit);
528
529 MODULE_LICENSE("GPL");
530 MODULE_AUTHOR("OpenWrt.org, Atheros Communications Inc");
531 MODULE_DESCRIPTION("MTD driver for SPI Flash on Atheros SOC");
532