ar7: cpmac better reset handling and napi implementation.
[openwrt.git] / target / linux / ar7-2.6 / files / drivers / net / cpmac.c
1 /*
2  * $Id$
3  * 
4  * Copyright (C) 2006, 2007 OpenWrt.org
5  * 
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License as published by
8  * the Free Software Foundation; either version 2 of the License, or
9  * (at your option) any later version.
10  * 
11  * This program is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14  * GNU General Public License for more details.
15  * 
16  * You should have received a copy of the GNU General Public License
17  * along with this program; if not, write to the Free Software
18  * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
19  */
20
21 #include <linux/module.h>
22 #include <linux/init.h>
23 #include <linux/moduleparam.h>
24
25 #include <linux/sched.h>
26 #include <linux/kernel.h> /* printk() */
27 #include <linux/slab.h>
28 #include <linux/errno.h>
29 #include <linux/types.h>
30 #include <linux/delay.h>
31 #include <linux/version.h>
32
33 #include <linux/netdevice.h>
34 #include <linux/etherdevice.h>
35 #include <linux/ethtool.h>
36 #include <linux/skbuff.h>
37 #include <linux/mii.h>
38 #include <linux/phy.h>
39 #include <linux/platform_device.h>
40 #include <asm/ar7/ar7.h>
41 #include <asm/gpio.h>
42
43 MODULE_AUTHOR("Eugene Konev");
44 MODULE_DESCRIPTION("TI AR7 ethernet driver (CPMAC)");
45 MODULE_LICENSE("GPL");
46
47 static int rx_ring_size = 64;
48 static int disable_napi = 0;
49 module_param(rx_ring_size, int, 64);
50 module_param(disable_napi, int, 0);
51 MODULE_PARM_DESC(rx_ring_size, "Size of rx ring (in skbs)");
52 MODULE_PARM_DESC(disable_napi, "Disable NAPI polling");
53
54 /* Register definitions */
55 struct cpmac_control_regs {
56         volatile u32 revision;
57         volatile u32 control;
58         volatile u32 teardown;
59         volatile u32 unused;
60 } __attribute__ ((packed));
61
62 struct cpmac_int_regs {
63         volatile u32 stat_raw;
64         volatile u32 stat_masked;
65         volatile u32 enable;
66         volatile u32 clear;
67 } __attribute__ ((packed));
68
69 struct cpmac_stats {
70         volatile u32 good;
71         volatile u32 bcast;
72         volatile u32 mcast;
73         volatile u32 pause;
74         volatile u32 crc_error;
75         volatile u32 align_error;
76         volatile u32 oversized;
77         volatile u32 jabber;
78         volatile u32 undersized;
79         volatile u32 fragment;
80         volatile u32 filtered;
81         volatile u32 qos_filtered;
82         volatile u32 octets;
83 } __attribute__ ((packed));
84
85 struct cpmac_regs {
86         struct cpmac_control_regs tx_ctrl;
87         struct cpmac_control_regs rx_ctrl;
88         volatile u32 unused1[56];
89         volatile u32 mbp;
90 /* MBP bits */
91 #define MBP_RXPASSCRC         0x40000000
92 #define MBP_RXQOS             0x20000000
93 #define MBP_RXNOCHAIN         0x10000000
94 #define MBP_RXCMF             0x01000000
95 #define MBP_RXSHORT           0x00800000
96 #define MBP_RXCEF             0x00400000
97 #define MBP_RXPROMISC         0x00200000
98 #define MBP_PROMISCCHAN(chan) (((chan) & 0x7) << 16)
99 #define MBP_RXBCAST           0x00002000
100 #define MBP_BCASTCHAN(chan)   (((chan) & 0x7) << 8)
101 #define MBP_RXMCAST           0x00000020
102 #define MBP_MCASTCHAN(chan)   ((chan) & 0x7)
103         volatile u32 unicast_enable;
104         volatile u32 unicast_clear;
105         volatile u32 max_len;
106         volatile u32 buffer_offset;
107         volatile u32 filter_flow_threshold;
108         volatile u32 unused2[2];
109         volatile u32 flow_thre[8];
110         volatile u32 free_buffer[8];
111         volatile u32 mac_control;
112 #define MAC_TXPTYPE  0x00000200
113 #define MAC_TXPACE   0x00000040
114 #define MAC_MII      0x00000020
115 #define MAC_TXFLOW   0x00000010
116 #define MAC_RXFLOW   0x00000008
117 #define MAC_MTEST    0x00000004
118 #define MAC_LOOPBACK 0x00000002
119 #define MAC_FDX      0x00000001
120         volatile u32 mac_status;
121 #define MACST_QOS    0x4
122 #define MACST_RXFLOW 0x2
123 #define MACST_TXFLOW 0x1
124         volatile u32 emc_control;
125         volatile u32 unused3;
126         struct cpmac_int_regs tx_int;
127         volatile u32 mac_int_vector;
128 /* Int Status bits */
129 #define INTST_STATUS 0x80000
130 #define INTST_HOST   0x40000
131 #define INTST_RX     0x20000
132 #define INTST_TX     0x10000
133         volatile u32 mac_eoi_vector;
134         volatile u32 unused4[2];
135         struct cpmac_int_regs rx_int;
136         volatile u32 mac_int_stat_raw;
137         volatile u32 mac_int_stat_masked;
138         volatile u32 mac_int_enable;
139         volatile u32 mac_int_clear;
140         volatile u32 mac_addr_low[8];
141         volatile u32 mac_addr_mid;
142         volatile u32 mac_addr_high;
143         volatile u32 mac_hash_low;
144         volatile u32 mac_hash_high;
145         volatile u32 boff_test;
146         volatile u32 pac_test;
147         volatile u32 rx_pause;
148         volatile u32 tx_pause;
149         volatile u32 unused5[2];
150         struct cpmac_stats rx_stats;
151         struct cpmac_stats tx_stats;
152         volatile u32 unused6[232];
153         volatile u32 tx_ptr[8];
154         volatile u32 rx_ptr[8];
155         volatile u32 tx_ack[8];
156         volatile u32 rx_ack[8];
157         
158 } __attribute__ ((packed));
159
160 struct cpmac_mdio_regs {
161         volatile u32 version;
162         volatile u32 control;
163 #define MDIOC_IDLE        0x80000000
164 #define MDIOC_ENABLE      0x40000000
165 #define MDIOC_PREAMBLE    0x00100000
166 #define MDIOC_FAULT       0x00080000
167 #define MDIOC_FAULTDETECT 0x00040000
168 #define MDIOC_INTTEST     0x00020000
169 #define MDIOC_CLKDIV(div) ((div) & 0xff)
170         volatile u32 alive;
171         volatile u32 link;
172         struct cpmac_int_regs link_int;
173         struct cpmac_int_regs user_int;
174         u32 unused[20];
175         volatile u32 access;
176 #define MDIO_BUSY       0x80000000
177 #define MDIO_WRITE      0x40000000
178 #define MDIO_REG(reg)   (((reg) & 0x1f) << 21)
179 #define MDIO_PHY(phy)   (((phy) & 0x1f) << 16)
180 #define MDIO_DATA(data) ((data) & 0xffff)
181         volatile u32 physel;
182 } __attribute__ ((packed));
183
184 /* Descriptor */
185 struct cpmac_desc {
186         u32 hw_next;
187         u32 hw_data;
188         u16 buflen;
189         u16 bufflags;
190         u16 datalen;
191         u16 dataflags;
192 /* Flags bits */
193 #define CPMAC_SOP 0x8000
194 #define CPMAC_EOP 0x4000
195 #define CPMAC_OWN 0x2000
196 #define CPMAC_EOQ 0x1000
197         struct sk_buff *skb;
198         struct cpmac_desc *next;
199 } __attribute__ ((packed));
200
201 struct cpmac_priv {
202         struct net_device_stats stats;
203         spinlock_t lock;
204         struct sk_buff *skb_pool;
205         int free_skbs;
206         struct cpmac_desc *rx_head;
207         int tx_head, tx_tail;
208         struct cpmac_desc *desc_ring;
209         struct cpmac_regs *regs;
210         struct mii_bus *mii_bus;
211         struct phy_device *phy;
212         char phy_name[BUS_ID_SIZE];
213         struct plat_cpmac_data *config;
214         int oldlink, oldspeed, oldduplex;
215         u32 msg_enable;
216         struct net_device *dev;
217         struct work_struct alloc_work;
218 };
219
220 static irqreturn_t cpmac_irq(int, void *);
221 static void cpmac_reset(struct net_device *dev);
222 static void cpmac_hw_init(struct net_device *dev);
223 static int cpmac_stop(struct net_device *dev);
224 static int cpmac_open(struct net_device *dev);
225
226 #define CPMAC_LOW_THRESH 32
227 #define CPMAC_ALLOC_SIZE 64
228 #define CPMAC_SKB_SIZE 1518
229 #define CPMAC_TX_RING_SIZE 8
230
231 #ifdef CPMAC_DEBUG
232 static void cpmac_dump_regs(u32 *base, int count)
233 {
234         int i;
235         for (i = 0; i < (count + 3) / 4; i++) {
236                 if (i % 4 == 0) printk("\nCPMAC[0x%04x]:", i * 4);
237                 printk(" 0x%08x", *(base + i));
238         }
239         printk("\n");
240 }
241 #endif
242
243 static int cpmac_mdio_read(struct mii_bus *bus, int phy_id, int regnum)
244 {
245         struct cpmac_mdio_regs *regs = (struct cpmac_mdio_regs *)bus->priv;
246         volatile u32 val;
247
248         while ((val = regs->access) & MDIO_BUSY);
249         regs->access = MDIO_BUSY | MDIO_REG(regnum & 0x1f) |
250                 MDIO_PHY(phy_id & 0x1f);
251         while ((val = regs->access) & MDIO_BUSY);
252
253         return val & 0xffff;
254 }
255
256 static int cpmac_mdio_write(struct mii_bus *bus, int phy_id, int regnum, u16 val)
257 {
258         struct cpmac_mdio_regs *regs = (struct cpmac_mdio_regs *)bus->priv;
259         volatile u32 tmp;
260
261         while ((tmp = regs->access) & MDIO_BUSY);
262         regs->access = MDIO_BUSY | MDIO_WRITE | 
263                 MDIO_REG(regnum & 0x1f) | MDIO_PHY(phy_id & 0x1f) |
264                 val;
265
266         return 0;
267 }
268
269 static int cpmac_mdio_reset(struct mii_bus *bus)
270 {
271         struct cpmac_mdio_regs *regs = (struct cpmac_mdio_regs *)bus->priv;
272
273         ar7_device_reset(AR7_RESET_BIT_MDIO);
274         regs->control = MDIOC_ENABLE |
275                 MDIOC_CLKDIV(ar7_cpmac_freq() / 2200000 - 1);
276
277         return 0;
278 }
279
280 static int mii_irqs[PHY_MAX_ADDR] = { PHY_POLL, };
281
282 static struct mii_bus cpmac_mii = {
283         .name = "cpmac-mii",
284         .read = cpmac_mdio_read,
285         .write = cpmac_mdio_write,
286         .reset = cpmac_mdio_reset,
287         .irq = mii_irqs,
288 };
289
290 static int cpmac_config(struct net_device *dev, struct ifmap *map)
291 {
292         if (dev->flags & IFF_UP)
293                 return -EBUSY;
294
295         /* Don't allow changing the I/O address */
296         if (map->base_addr != dev->base_addr)
297                 return -EOPNOTSUPP;
298
299         /* ignore other fields */
300         return 0;
301 }
302
303 static int cpmac_set_mac_address(struct net_device *dev, void *addr)
304 {
305         struct sockaddr *sa = addr;
306
307         if (dev->flags & IFF_UP)
308                 return -EBUSY;
309
310         memcpy(dev->dev_addr, sa->sa_data, dev->addr_len);
311
312         return 0;
313 }
314
315 static void cpmac_set_multicast_list(struct net_device *dev)
316 {
317         struct dev_mc_list *iter;
318         int i;
319         int hash, tmp;
320         int hashlo = 0, hashhi = 0;
321         struct cpmac_priv *priv = netdev_priv(dev);
322
323         if(dev->flags & IFF_PROMISC) {
324                 priv->regs->mbp &= ~MBP_PROMISCCHAN(0); /* promisc channel 0 */
325                 priv->regs->mbp |= MBP_RXPROMISC;
326         } else {
327                 priv->regs->mbp &= ~MBP_RXPROMISC;
328                 if(dev->flags & IFF_ALLMULTI) {
329                         /* enable all multicast mode */
330                         priv->regs->mac_hash_low = 0xffffffff;
331                         priv->regs->mac_hash_high = 0xffffffff;
332                 } else {
333                         for(i = 0, iter = dev->mc_list; i < dev->mc_count;
334                             i++, iter = iter->next) {
335                                 hash = 0;
336                                 tmp = iter->dmi_addr[0];
337                                 hash  ^= (tmp >> 2) ^ (tmp << 4);
338                                 tmp = iter->dmi_addr[1];
339                                 hash  ^= (tmp >> 4) ^ (tmp << 2);
340                                 tmp = iter->dmi_addr[2];
341                                 hash  ^= (tmp >> 6) ^ tmp;
342                                 tmp = iter->dmi_addr[4];
343                                 hash  ^= (tmp >> 2) ^ (tmp << 4);
344                                 tmp = iter->dmi_addr[5];
345                                 hash  ^= (tmp >> 4) ^ (tmp << 2);
346                                 tmp = iter->dmi_addr[6];
347                                 hash  ^= (tmp >> 6) ^ tmp;
348                                 hash &= 0x3f;
349                                 if(hash < 32) {
350                                         hashlo |= 1<<hash;
351                                 } else {
352                                         hashhi |= 1<<(hash - 32);
353                                 }
354                         }
355
356                         priv->regs->mac_hash_low = hashlo;
357                         priv->regs->mac_hash_high = hashhi;
358                 }
359         }
360 }
361
362 static struct sk_buff *cpmac_get_skb(struct net_device *dev) 
363 {
364         struct sk_buff *skb;
365         struct cpmac_priv *priv = netdev_priv(dev);
366
367         skb = priv->skb_pool;
368         if (likely(skb)) {
369                 priv->skb_pool = skb->next;
370         } else {
371                 skb = dev_alloc_skb(CPMAC_SKB_SIZE + 2);
372                 if (skb) {
373                         skb->next = NULL;
374                         skb_reserve(skb, 2);
375                         skb->dev = priv->dev;
376                 }
377         }
378
379         if (likely(priv->free_skbs))
380                 priv->free_skbs--;
381
382         if (priv->free_skbs < CPMAC_LOW_THRESH)
383                 schedule_work(&priv->alloc_work);
384
385         return skb;
386 }
387
388 static inline struct sk_buff *cpmac_rx_one(struct net_device *dev, 
389                                            struct cpmac_priv *priv,
390                                            struct cpmac_desc *desc)
391 {
392         unsigned long flags;
393         char *data;
394         struct sk_buff *skb, *result = NULL;
395
396         priv->regs->rx_ack[0] = virt_to_phys(desc);
397         if (unlikely(!desc->datalen)) {
398                 if (printk_ratelimit())
399                         printk(KERN_WARNING "%s: rx: spurious interrupt\n",
400                                dev->name);
401                 priv->stats.rx_errors++;
402                 return NULL;
403         }
404
405         spin_lock_irqsave(&priv->lock, flags);
406         skb = cpmac_get_skb(dev);
407         if (likely(skb)) {
408                 data = (char *)phys_to_virt(desc->hw_data);
409                 dma_cache_inv((u32)data, desc->datalen);
410                 skb_put(desc->skb, desc->datalen);
411                 desc->skb->protocol = eth_type_trans(desc->skb, dev);
412                 desc->skb->ip_summed = CHECKSUM_NONE;
413                 priv->stats.rx_packets++;
414                 priv->stats.rx_bytes += desc->datalen;
415                 result = desc->skb;
416                 desc->skb = skb;
417         } else {
418 #ifdef CPMAC_DEBUG
419                 if (printk_ratelimit())
420                         printk("%s: low on skbs, dropping packet\n",
421                                dev->name);
422 #endif
423                 priv->stats.rx_dropped++;
424         }
425         spin_unlock_irqrestore(&priv->lock, flags);
426
427         desc->hw_data = virt_to_phys(desc->skb->data);
428         desc->buflen = CPMAC_SKB_SIZE;
429         desc->dataflags = CPMAC_OWN;
430         dma_cache_wback((u32)desc, 16);
431
432         return result;
433 }
434
435 static void cpmac_rx(struct net_device *dev)
436 {
437         struct sk_buff *skb;
438         struct cpmac_desc *desc;
439         struct cpmac_priv *priv = netdev_priv(dev);
440
441         spin_lock(&priv->lock);
442         if (unlikely(!priv->rx_head)) {
443                 spin_unlock(&priv->lock);
444                 return;
445         }
446
447         desc = priv->rx_head;
448         dma_cache_inv((u32)desc, 16);
449         
450         while ((desc->dataflags & CPMAC_OWN) == 0) {
451                 skb = cpmac_rx_one(dev, priv, desc);
452                 if (likely(skb)) {
453                         netif_rx(skb);
454                 }
455                 desc = desc->next;
456                 dma_cache_inv((u32)desc, 16);
457         }
458
459         priv->rx_head = desc;
460         priv->regs->rx_ptr[0] = virt_to_phys(desc);
461         spin_unlock(&priv->lock);
462 }
463
464 static int cpmac_poll(struct net_device *dev, int *budget)
465 {
466         struct sk_buff *skb;
467         struct cpmac_desc *desc;
468         int received = 0, quota = min(dev->quota, *budget);
469         struct cpmac_priv *priv = netdev_priv(dev);
470
471         if (unlikely(!priv->rx_head)) {
472                 if (printk_ratelimit())
473                         printk(KERN_WARNING "%s: rx: polling, but no queue\n",
474                                dev->name);
475                 netif_rx_complete(dev);
476                 return 0;
477         }
478
479         desc = priv->rx_head;
480         dma_cache_inv((u32)desc, 16);
481         
482         while ((received < quota) && ((desc->dataflags & CPMAC_OWN) == 0)) {
483                 skb = cpmac_rx_one(dev, priv, desc);
484                 if (likely(skb)) {
485                         netif_receive_skb(skb);
486                         received++;
487                 }
488                 desc = desc->next;
489                 priv->rx_head = desc;
490                 dma_cache_inv((u32)desc, 16);
491         }
492
493         *budget -= received;
494         dev->quota -= received;
495 #ifdef CPMAC_DEBUG
496         printk("%s: processed %d packets\n", dev->name, received);
497 #endif
498         if (desc->dataflags & CPMAC_OWN) {
499                 priv->regs->rx_ptr[0] = virt_to_phys(desc);
500                 netif_rx_complete(dev);
501                 priv->regs->rx_int.enable = 0x1;
502                 priv->regs->rx_int.clear = 0xfe;
503                 return 0;
504         }
505
506         return 1;
507 }
508
509 #if LINUX_VERSION_CODE >= KERNEL_VERSION(2, 6, 20)
510 static void
511 cpmac_alloc_skbs(struct work_struct *work)
512 {
513         struct cpmac_priv *priv = container_of(work, struct cpmac_priv,
514                                                alloc_work);
515 #else
516 static void
517 cpmac_alloc_skbs(void *data)
518 {
519         struct net_device *dev = (struct net_device*)data;
520         struct cpmac_priv *priv = netdev_priv(dev);
521 #endif
522         unsigned long flags;
523         int i, num_skbs = 0;
524         struct sk_buff *skb, *skbs = NULL;
525
526         for (i = 0; i < CPMAC_ALLOC_SIZE; i++) {
527                 skb = alloc_skb(CPMAC_SKB_SIZE + 2, GFP_KERNEL);
528                 if (!skb)
529                         break;
530                 skb->next = skbs;
531                 skb_reserve(skb, 2);
532                 skb->dev = priv->dev;
533                 num_skbs++;
534                 skbs = skb;
535         }
536
537         if (skbs) {
538                 spin_lock_irqsave(&priv->lock, flags);
539                 for (skb = priv->skb_pool; skb && skb->next; skb = skb->next);
540                 if (!skb) {
541                         priv->skb_pool = skbs;
542                 } else {
543                         skb->next = skbs;
544                 }
545                 priv->free_skbs += num_skbs;
546                 spin_unlock_irqrestore(&priv->lock, flags);
547 #ifdef CPMAC_DEBUG
548                 printk("%s: allocated %d skbs\n", priv->dev->name, num_skbs);
549 #endif
550         }
551 }
552
553 static int cpmac_start_xmit(struct sk_buff *skb, struct net_device *dev)
554 {
555         unsigned long flags;
556         int len, chan;
557         struct cpmac_desc *desc;
558         struct cpmac_priv *priv = netdev_priv(dev);
559
560         len = skb->len;
561         if (unlikely(len < ETH_ZLEN)) {
562                 if (unlikely(skb_padto(skb, ETH_ZLEN))) {
563                         if (printk_ratelimit())
564                                 printk(KERN_NOTICE "%s: padding failed, dropping\n",
565                                        dev->name); 
566                         spin_lock_irqsave(&priv->lock, flags);
567                         priv->stats.tx_dropped++;
568                         spin_unlock_irqrestore(&priv->lock, flags);
569                         return -ENOMEM;
570                 }
571                 len = ETH_ZLEN;
572         }
573         spin_lock_irqsave(&priv->lock, flags);
574         chan = priv->tx_tail++;
575         priv->tx_tail %= 8;
576         if (priv->tx_tail == priv->tx_head)
577                 netif_stop_queue(dev);
578
579         desc = &priv->desc_ring[chan];
580         dma_cache_inv((u32)desc, 16);
581         if (desc->dataflags & CPMAC_OWN) {
582                 printk(KERN_NOTICE "%s: tx dma ring full, dropping\n", dev->name);
583                 priv->stats.tx_dropped++;
584                 spin_unlock_irqrestore(&priv->lock, flags);
585                 return -ENOMEM;
586         }
587
588         dev->trans_start = jiffies;
589         desc->dataflags = CPMAC_SOP | CPMAC_EOP | CPMAC_OWN;
590         desc->skb = skb;
591         desc->hw_data = virt_to_phys(skb->data);
592         dma_cache_wback((u32)skb->data, len);
593         desc->buflen = len;
594         desc->datalen = len;
595         desc->hw_next = 0;
596         dma_cache_wback((u32)desc, 16);
597         priv->regs->tx_ptr[chan] = virt_to_phys(desc);
598         spin_unlock_irqrestore(&priv->lock, flags);
599
600         return 0;
601 }
602
603 static void cpmac_end_xmit(struct net_device *dev, int channel)
604 {
605         struct cpmac_desc *desc;
606         struct cpmac_priv *priv = netdev_priv(dev);
607
608         spin_lock(&priv->lock);
609         desc = &priv->desc_ring[channel];
610         priv->regs->tx_ack[channel] = virt_to_phys(desc);
611         if (likely(desc->skb)) {
612                 priv->stats.tx_packets++;
613                 priv->stats.tx_bytes += desc->skb->len;
614                 dev_kfree_skb_irq(desc->skb);
615                 if (netif_queue_stopped(dev))
616                         netif_wake_queue(dev);
617         } else {
618                 if (printk_ratelimit())
619                         printk(KERN_NOTICE "%s: end_xmit: spurious interrupt\n",
620                                dev->name); 
621         }
622         spin_unlock(&priv->lock);
623 }
624
625 static void cpmac_reset(struct net_device *dev)
626 {
627         int i;
628         struct cpmac_priv *priv = netdev_priv(dev);
629
630         ar7_device_reset(priv->config->reset_bit);
631         priv->regs->rx_ctrl.control &= ~1;
632         priv->regs->tx_ctrl.control &= ~1;
633         for (i = 0; i < 8; i++) {
634                 priv->regs->tx_ptr[i] = 0;
635                 priv->regs->rx_ptr[i] = 0;
636         }
637         priv->regs->mac_control &= ~MAC_MII; /* disable mii */
638 }
639
640 static inline void cpmac_free_rx_ring(struct net_device *dev)
641 {
642         struct cpmac_desc *desc;
643         int i;
644         struct cpmac_priv *priv = netdev_priv(dev);
645
646         if (unlikely(!priv->rx_head))
647                 return;
648
649         desc = priv->rx_head;
650         dma_cache_inv((u32)desc, 16);
651         
652         for (i = 0; i < rx_ring_size; i++) {
653                 desc->buflen = CPMAC_SKB_SIZE;
654                 if ((desc->dataflags & CPMAC_OWN) == 0) {
655                         desc->dataflags = CPMAC_OWN;
656                         priv->stats.rx_dropped++;
657                 }
658                 dma_cache_wback((u32)desc, 16);
659                 desc = desc->next;
660                 dma_cache_inv((u32)desc, 16);
661         }
662 }
663
664 static irqreturn_t cpmac_irq(int irq, void *dev_id)
665 {
666         struct net_device *dev = (struct net_device *)dev_id;
667         struct cpmac_priv *priv = netdev_priv(dev);
668         u32 status;
669
670         if (!dev)
671                 return IRQ_NONE;
672
673         status = priv->regs->mac_int_vector;
674
675         if (status & INTST_TX) {
676                 cpmac_end_xmit(dev, (status & 7));
677         }
678
679         if (status & INTST_RX) {
680                 if (disable_napi) {
681                         cpmac_rx(dev);
682                 } else {
683                         priv->regs->rx_int.enable = 0;
684                         priv->regs->rx_int.clear = 0xff;
685                         netif_rx_schedule(dev);
686                 }
687         }
688
689         priv->regs->mac_eoi_vector = 0;
690
691         if (unlikely(status & (INTST_HOST | INTST_STATUS))) {
692                 printk(KERN_ERR "%s: hw error, resetting...\n", dev->name);
693                 spin_lock(&priv->lock);
694                 phy_stop(priv->phy);
695                 cpmac_reset(dev);
696                 cpmac_free_rx_ring(dev);
697                 cpmac_hw_init(dev);
698                 spin_unlock(&priv->lock);
699         }
700
701         return IRQ_HANDLED;
702 }
703
704 static void cpmac_tx_timeout(struct net_device *dev)
705 {
706         struct cpmac_priv *priv = netdev_priv(dev);
707         struct cpmac_desc *desc;
708
709         priv->stats.tx_errors++;
710         desc = &priv->desc_ring[priv->tx_head++];
711         priv->tx_head %= 8;
712         printk("%s: transmit timeout\n", dev->name);
713         if (desc->skb)
714                 dev_kfree_skb(desc->skb);
715         netif_wake_queue(dev);
716 }
717
718 static int cpmac_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
719 {
720         struct cpmac_priv *priv = netdev_priv(dev);
721         if (!(netif_running(dev)))
722                 return -EINVAL;
723         if (!priv->phy)
724                 return -EINVAL;
725         if ((cmd == SIOCGMIIPHY) || (cmd == SIOCGMIIREG) || 
726             (cmd == SIOCSMIIREG))
727                 return phy_mii_ioctl(priv->phy, if_mii(ifr), cmd);
728
729         return -EINVAL;
730 }
731
732 static int cpmac_get_settings(struct net_device *dev, struct ethtool_cmd *cmd)
733 {
734         struct cpmac_priv *priv = netdev_priv(dev);
735
736         if (priv->phy)
737                 return phy_ethtool_gset(priv->phy, cmd);
738
739         return -EINVAL;
740 }
741
742 static int cpmac_set_settings(struct net_device *dev, struct ethtool_cmd *cmd)
743 {
744         struct cpmac_priv *priv = netdev_priv(dev);
745
746         if (!capable(CAP_NET_ADMIN))
747                 return -EPERM;
748
749         if (priv->phy)
750                 return phy_ethtool_sset(priv->phy, cmd);
751
752         return -EINVAL;
753 }
754
755 static void cpmac_get_drvinfo(struct net_device *dev, 
756                               struct ethtool_drvinfo *info)
757 {
758         strcpy(info->driver, "cpmac");
759         strcpy(info->version, "0.0.3");
760         info->fw_version[0] = '\0';
761         sprintf(info->bus_info, "%s", "cpmac");
762         info->regdump_len = 0;
763 }
764
765 static const struct ethtool_ops cpmac_ethtool_ops = {
766         .get_settings = cpmac_get_settings,
767         .set_settings = cpmac_set_settings,
768         .get_drvinfo = cpmac_get_drvinfo,
769         .get_link = ethtool_op_get_link,
770 };
771
772 static struct net_device_stats *cpmac_stats(struct net_device *dev)
773 {
774         struct cpmac_priv *priv = netdev_priv(dev);
775
776         if (netif_device_present(dev))
777                 return &priv->stats;
778
779         return NULL;
780 }
781
782 static int cpmac_change_mtu(struct net_device *dev, int mtu)
783 {
784         unsigned long flags;
785         struct cpmac_priv *priv = netdev_priv(dev);
786         spinlock_t *lock = &priv->lock;
787     
788         if ((mtu < 68) || (mtu > 1500))
789                 return -EINVAL;
790
791         spin_lock_irqsave(lock, flags);
792         dev->mtu = mtu;
793         spin_unlock_irqrestore(lock, flags);
794
795         return 0;
796 }
797
798 static void cpmac_adjust_link(struct net_device *dev)
799 {
800         struct cpmac_priv *priv = netdev_priv(dev);
801         unsigned long flags;
802         int new_state = 0;
803
804         spin_lock_irqsave(&priv->lock, flags);
805         if (priv->phy->link) {
806                 if (priv->phy->duplex != priv->oldduplex) {
807                         new_state = 1;
808                         priv->oldduplex = priv->phy->duplex;
809                 }
810
811                 if (priv->phy->speed != priv->oldspeed) {
812                         new_state = 1;
813                         priv->oldspeed = priv->phy->speed;
814                 }
815
816                 if (!priv->oldlink) {
817                         new_state = 1;
818                         priv->oldlink = 1;
819                         netif_schedule(dev);
820                 }
821         } else if (priv->oldlink) {
822                 new_state = 1;
823                 priv->oldlink = 0;
824                 priv->oldspeed = 0;
825                 priv->oldduplex = -1;
826         }
827
828         if (new_state)
829                 phy_print_status(priv->phy);
830
831         spin_unlock_irqrestore(&priv->lock, flags);
832 }
833
834 static void cpmac_hw_init(struct net_device *dev)
835 {
836         int i;
837         struct cpmac_priv *priv = netdev_priv(dev);
838
839         for (i = 0; i < 8; i++)
840                 priv->regs->tx_ptr[i] = 0;
841         priv->regs->rx_ptr[0] = virt_to_phys(priv->rx_head);
842
843         priv->regs->mbp = MBP_RXSHORT | MBP_RXBCAST | MBP_RXMCAST;
844         priv->regs->unicast_enable = 0x1;
845         priv->regs->unicast_clear = 0xfe;
846         priv->regs->buffer_offset = 0;
847         for (i = 0; i < 8; i++)
848                 priv->regs->mac_addr_low[i] = dev->dev_addr[5];
849         priv->regs->mac_addr_mid = dev->dev_addr[4];
850         priv->regs->mac_addr_high = dev->dev_addr[0] | (dev->dev_addr[1] << 8)
851                 | (dev->dev_addr[2] << 16) | (dev->dev_addr[3] << 24);
852         priv->regs->max_len = CPMAC_SKB_SIZE;
853         priv->regs->rx_int.enable = 0x1;
854         priv->regs->rx_int.clear = 0xfe;
855         priv->regs->tx_int.enable = 0xff;
856         priv->regs->tx_int.clear = 0;
857         priv->regs->mac_int_enable = 3;
858         priv->regs->mac_int_clear = 0xfc;
859
860         priv->regs->rx_ctrl.control |= 1;
861         priv->regs->tx_ctrl.control |= 1;
862         priv->regs->mac_control |= MAC_MII | MAC_FDX;
863
864         priv->phy->state = PHY_CHANGELINK;
865         phy_start(priv->phy);
866 }
867
868 static int cpmac_open(struct net_device *dev)
869 {
870         int i, size, res;
871         struct cpmac_priv *priv = netdev_priv(dev);
872         struct cpmac_desc *desc;
873         struct sk_buff *skb;
874
875 #if LINUX_VERSION_CODE >= KERNEL_VERSION(2, 6, 20)
876         priv->phy = phy_connect(dev, priv->phy_name, &cpmac_adjust_link,
877                                 0, PHY_INTERFACE_MODE_MII);
878 #else
879         priv->phy = phy_connect(dev, priv->phy_name, &cpmac_adjust_link, 0);
880 #endif
881         if (IS_ERR(priv->phy)) {
882                 printk(KERN_ERR "%s: Could not attach to PHY\n", dev->name);
883                 return PTR_ERR(priv->phy);
884         }
885
886         if (!request_mem_region(dev->mem_start, dev->mem_end -
887                                 dev->mem_start, dev->name)) {
888                 printk("%s: failed to request registers\n",
889                        dev->name); 
890                 res = -ENXIO;
891                 goto fail_reserve;
892         }
893
894         priv->regs = ioremap_nocache(dev->mem_start, dev->mem_end -
895                                      dev->mem_start);
896         if (!priv->regs) {
897                 printk("%s: failed to remap registers\n", dev->name);
898                 res = -ENXIO;
899                 goto fail_remap;
900         }
901
902         priv->rx_head = NULL;
903         size = sizeof(struct cpmac_desc) * (rx_ring_size +
904                                             CPMAC_TX_RING_SIZE);
905         priv->desc_ring = (struct cpmac_desc *)kmalloc(size, GFP_KERNEL);
906         if (!priv->desc_ring) {
907                 res = -ENOMEM;
908                 goto fail_alloc;
909         }
910
911         memset((char *)priv->desc_ring, 0, size);
912
913         priv->skb_pool = NULL;
914         priv->free_skbs = 0;
915         priv->rx_head = &priv->desc_ring[CPMAC_TX_RING_SIZE];
916
917 #if LINUX_VERSION_CODE >= KERNEL_VERSION(2, 6, 20)
918         INIT_WORK(&priv->alloc_work, cpmac_alloc_skbs);
919 #else
920         INIT_WORK(&priv->alloc_work, cpmac_alloc_skbs, dev);
921 #endif
922         schedule_work(&priv->alloc_work);
923         flush_scheduled_work();
924
925         for (i = 0; i < rx_ring_size; i++) {
926                 desc = &priv->rx_head[i];
927                 skb = cpmac_get_skb(dev);
928                 if (!skb) {
929                         res = -ENOMEM;
930                         goto fail_desc;
931                 }
932                 desc->skb = skb;
933                 desc->hw_data = virt_to_phys(skb->data);
934                 desc->buflen = CPMAC_SKB_SIZE;
935                 desc->dataflags = CPMAC_OWN;
936                 desc->next = &priv->rx_head[(i + 1) % rx_ring_size];
937                 desc->hw_next = virt_to_phys(desc->next);
938                 dma_cache_wback((u32)desc, 16);
939         }
940
941         if((res = request_irq(dev->irq, cpmac_irq, SA_INTERRUPT,
942                               dev->name, dev))) {
943                 printk("%s: failed to obtain irq\n", dev->name);
944                 goto fail_irq;
945         }
946
947         cpmac_reset(dev);
948         cpmac_hw_init(dev);
949
950         netif_start_queue(dev);
951         return 0;
952
953 fail_irq:
954 fail_desc:
955         for (i = 0; i < rx_ring_size; i++)
956                 if (priv->rx_head[i].skb)
957                         kfree_skb(priv->rx_head[i].skb);
958 fail_alloc:
959         kfree(priv->desc_ring);
960
961         for (skb = priv->skb_pool; skb; skb = priv->skb_pool) {
962                 priv->skb_pool = skb->next;
963                 kfree_skb(skb);
964         }
965
966         iounmap(priv->regs);
967
968 fail_remap:
969         release_mem_region(dev->mem_start, dev->mem_end -
970                            dev->mem_start);
971
972 fail_reserve:
973         phy_disconnect(priv->phy);
974
975         return res;
976 }
977
978 static int cpmac_stop(struct net_device *dev)
979 {
980         int i;
981         struct sk_buff *skb;
982         struct cpmac_priv *priv = netdev_priv(dev);
983
984         netif_stop_queue(dev);
985
986         phy_stop(priv->phy);
987         phy_disconnect(priv->phy);
988         priv->phy = NULL;
989
990         cpmac_reset(dev);
991
992         for (i = 0; i < 8; i++) {
993                 priv->regs->rx_ptr[i] = 0;
994                 priv->regs->tx_ptr[i] = 0;
995                 priv->regs->mbp = 0;
996         }
997
998         free_irq(dev->irq, dev);
999         release_mem_region(dev->mem_start, dev->mem_end -
1000                            dev->mem_start);
1001
1002         cancel_delayed_work(&priv->alloc_work);
1003         flush_scheduled_work();
1004
1005         priv->rx_head = &priv->desc_ring[CPMAC_TX_RING_SIZE];
1006         for (i = 0; i < rx_ring_size; i++)
1007                 if (priv->rx_head[i].skb)
1008                         kfree_skb(priv->rx_head[i].skb);
1009
1010         kfree(priv->desc_ring);
1011
1012         for (skb = priv->skb_pool; skb; skb = priv->skb_pool) {
1013                 priv->skb_pool = skb->next;
1014                 kfree_skb(skb);
1015         }
1016
1017         return 0;
1018 }
1019
1020 static int external_switch = 0;
1021
1022 static int __devinit cpmac_probe(struct platform_device *pdev)
1023 {
1024         int i, rc, phy_id;
1025         struct resource *res;
1026         struct cpmac_priv *priv;
1027         struct net_device *dev;
1028         struct plat_cpmac_data *pdata;
1029
1030         if (strcmp(pdev->name, "cpmac") != 0)
1031                 return -ENODEV;
1032
1033         pdata = pdev->dev.platform_data;
1034
1035         for (phy_id = 0; phy_id < PHY_MAX_ADDR; phy_id++) {
1036                 if (!(pdata->phy_mask & (1 << phy_id)))
1037                         continue;
1038                 if (!cpmac_mii.phy_map[phy_id])
1039                         continue;
1040                 break;
1041         }
1042
1043         if (phy_id == PHY_MAX_ADDR) {
1044                 if (external_switch) {
1045                         phy_id = 0;
1046                 } else {
1047                         printk("cpmac: no PHY present\n");
1048                         return -ENODEV;
1049                 }
1050         }
1051
1052         dev = alloc_etherdev(sizeof(struct cpmac_priv));
1053
1054         if (!dev) {
1055                 printk(KERN_ERR "cpmac: Unable to allocate net_device structure!\n");
1056                 return -ENOMEM;
1057         }
1058
1059         SET_MODULE_OWNER(dev);
1060         platform_set_drvdata(pdev, dev);
1061         priv = netdev_priv(dev);
1062
1063         res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "regs");
1064         if (!res) {
1065                 rc = -ENODEV;
1066                 goto fail;
1067         }
1068
1069         dev->mem_start = res->start;
1070         dev->mem_end = res->end;
1071         dev->irq = platform_get_irq_byname(pdev, "irq");
1072
1073         dev->mtu                = 1500;
1074         dev->open               = cpmac_open;
1075         dev->stop               = cpmac_stop;
1076         dev->set_config         = cpmac_config;
1077         dev->hard_start_xmit    = cpmac_start_xmit;
1078         dev->do_ioctl           = cpmac_ioctl;
1079         dev->get_stats          = cpmac_stats;
1080         dev->change_mtu         = cpmac_change_mtu;  
1081         dev->set_mac_address    = cpmac_set_mac_address;  
1082         dev->set_multicast_list = cpmac_set_multicast_list;
1083         dev->tx_timeout         = cpmac_tx_timeout;
1084         dev->ethtool_ops        = &cpmac_ethtool_ops;
1085         if (!disable_napi) {
1086                 dev->poll = cpmac_poll;
1087                 dev->weight = min(rx_ring_size, 64);
1088         }
1089
1090         memset(priv, 0, sizeof(struct cpmac_priv));
1091         spin_lock_init(&priv->lock);
1092         priv->msg_enable = netif_msg_init(NETIF_MSG_WOL, 0x3fff);
1093         priv->config = pdata;
1094         priv->dev = dev;
1095         memcpy(dev->dev_addr, priv->config->dev_addr, sizeof(dev->dev_addr));
1096         if (phy_id == 31) {
1097                 snprintf(priv->phy_name, BUS_ID_SIZE, PHY_ID_FMT,
1098                          cpmac_mii.id, phy_id);
1099         } else {
1100                 snprintf(priv->phy_name, BUS_ID_SIZE, "fixed@%d:%d", 100, 1);
1101         }
1102
1103         if ((rc = register_netdev(dev))) {
1104                 printk("cpmac: error %i registering device %s\n",
1105                        rc, dev->name);
1106                 goto fail;
1107         }
1108
1109         printk("cpmac: device %s (regs: %p, irq: %d, phy: %s, mac: ",
1110                dev->name, (u32 *)dev->mem_start, dev->irq,
1111                priv->phy_name);
1112         for (i = 0; i < 6; i++) {
1113                 printk("%02x", dev->dev_addr[i]);
1114                 if (i < 5) printk(":");
1115                 else printk(")\n");
1116         }
1117
1118         return 0;
1119
1120 fail:
1121         free_netdev(dev);
1122         return rc;
1123 }
1124
1125 static int __devexit cpmac_remove(struct platform_device *pdev)
1126 {
1127         struct net_device *dev = platform_get_drvdata(pdev);
1128         unregister_netdev(dev);
1129         free_netdev(dev);
1130         return 0;
1131 }
1132
1133 static struct platform_driver cpmac_driver = {
1134         .driver.name = "cpmac",
1135         .probe = cpmac_probe,
1136         .remove = cpmac_remove,
1137 };
1138
1139 int __devinit cpmac_init(void)
1140 {
1141         volatile u32 mask;
1142         int i, res;
1143         cpmac_mii.priv = (struct cpmac_mdio_regs *)
1144                 ioremap_nocache(AR7_REGS_MDIO, sizeof(struct cpmac_mdio_regs));
1145
1146         if (!cpmac_mii.priv) {
1147                 printk("Can't ioremap mdio registers\n");
1148                 return -ENXIO;
1149         }
1150
1151 #warning FIXME: unhardcode gpio&reset bits
1152         ar7_gpio_disable(26);
1153         ar7_gpio_disable(27);
1154         ar7_device_reset(17);
1155         ar7_device_reset(21);
1156         ar7_device_reset(26);
1157
1158         cpmac_mii.reset(&cpmac_mii);
1159
1160         for (i = 0; i < 300000; i++) {
1161                 mask = ((struct cpmac_mdio_regs *)cpmac_mii.priv)->alive;
1162                 if (mask)
1163                         break;
1164         }
1165
1166         mask &= 0x7fffffff;
1167         if (mask & (mask - 1)) {
1168                 external_switch = 1;
1169                 mask = 0;
1170         }
1171
1172         cpmac_mii.phy_mask = ~(mask | 0x80000000);
1173
1174         res = mdiobus_register(&cpmac_mii);
1175         if (res)
1176                 goto fail_mii;
1177
1178         res = platform_driver_register(&cpmac_driver);
1179         if (res)
1180                 goto fail_cpmac;
1181
1182         return 0;
1183
1184 fail_cpmac:
1185         mdiobus_unregister(&cpmac_mii);
1186
1187 fail_mii:
1188         iounmap(cpmac_mii.priv);
1189
1190         return res;
1191 }
1192
1193 void __devexit cpmac_exit(void)
1194 {
1195         platform_driver_unregister(&cpmac_driver);
1196         mdiobus_unregister(&cpmac_mii);
1197 }
1198
1199 module_init(cpmac_init);
1200 module_exit(cpmac_exit);