--- /dev/null
+--- a/scripts/kallsyms.c
++++ b/scripts/kallsyms.c
+@@ -54,6 +54,7 @@ static struct text_range text_ranges[] =
+ static struct sym_entry *table;
+ static unsigned int table_size, table_cnt;
+ static int all_symbols = 0;
++static int uncompressed = 0;
+ static char symbol_prefix_char = '\0';
+
+ int token_profit[0x10000];
+@@ -360,6 +361,9 @@ static void write_src(void)
+
+ free(markers);
+
++ if (uncompressed)
++ return;
++
+ output_label("kallsyms_token_table");
+ off = 0;
+ for (i = 0; i < 256; i++) {
+@@ -418,6 +422,9 @@ static void *find_token(unsigned char *s
+ {
+ int i;
+
++ if (uncompressed)
++ return NULL;
++
+ for (i = 0; i < len - 1; i++) {
+ if (str[i] == token[0] && str[i+1] == token[1])
+ return &str[i];
+@@ -490,6 +497,9 @@ static void optimize_result(void)
+ {
+ int i, best;
+
++ if (uncompressed)
++ return;
++
+ /* using the '\0' symbol last allows compress_symbols to use standard
+ * fast string functions */
+ for (i = 255; i >= 0; i--) {
+@@ -646,7 +656,9 @@ int main(int argc, char **argv)
+ if ((*p == '"' && *(p+2) == '"') || (*p == '\'' && *(p+2) == '\''))
+ p++;
+ symbol_prefix_char = *p;
+- } else
++ } else if (strcmp(argv[i], "--uncompressed") == 0)
++ uncompressed = 1;
++ else
+ usage();
+ }
+ } else if (argc != 1)
+--- a/init/Kconfig
++++ b/init/Kconfig
+@@ -1257,6 +1257,17 @@ config KALLSYMS_ALL
+
+ Say N unless you really need all symbols.
+
++config KALLSYMS_UNCOMPRESSED
++ bool "Keep kallsyms uncompressed"
++ depends on KALLSYMS
++ help
++ Normally kallsyms contains compressed symbols (using a token table),
++ reducing the uncompressed kernel image size. Keeping the symbol table
++ uncompressed significantly improves the size of this part in compressed
++ kernel images.
++
++ Say N unless you need compressed kernel images to be small.
++
+ config HOTPLUG
+ def_bool y
+
+--- a/scripts/link-vmlinux.sh
++++ b/scripts/link-vmlinux.sh
+@@ -83,6 +83,10 @@ kallsyms()
+ kallsymopt="${kallsymopt} --all-symbols"
+ fi
+
++ if [ -n "${CONFIG_KALLSYMS_UNCOMPRESSED}" ]; then
++ kallsymopt="${kallsymopt} --uncompressed"
++ fi
++
+ local aflags="${KBUILD_AFLAGS} ${KBUILD_AFLAGS_KERNEL} \
+ ${NOSTDINC_FLAGS} ${LINUXINCLUDE} ${KBUILD_CPPFLAGS}"
+
+--- a/kernel/kallsyms.c
++++ b/kernel/kallsyms.c
+@@ -106,6 +106,11 @@ static unsigned int kallsyms_expand_symb
+ * For every byte on the compressed symbol data, copy the table
+ * entry for that byte.
+ */
++#ifdef CONFIG_KALLSYMS_UNCOMPRESSED
++ memcpy(result, data + 1, len - 1);
++ result += len - 1;
++ len = 0;
++#endif
+ while (len) {
+ tptr = &kallsyms_token_table[kallsyms_token_index[*data]];
+ data++;
+@@ -133,6 +138,9 @@ static unsigned int kallsyms_expand_symb
+ */
+ static char kallsyms_get_symbol_type(unsigned int off)
+ {
++#ifdef CONFIG_KALLSYMS_UNCOMPRESSED
++ return kallsyms_names[off + 1];
++#endif
+ /*
+ * Get just the first code, look it up in the token table,
+ * and return the first char from this token.
--- /dev/null
+--- a/arch/mips/Makefile
++++ b/arch/mips/Makefile
+@@ -90,8 +90,13 @@ all-$(CONFIG_SYS_SUPPORTS_ZBOOT)+= vmlin
+ cflags-y += -G 0 -mno-abicalls -fno-pic -pipe -mno-branch-likely
+ cflags-y += -msoft-float
+ LDFLAGS_vmlinux += -G 0 -static -n -nostdlib
++ifdef CONFIG_64BIT
+ KBUILD_AFLAGS_MODULE += -mlong-calls
+ KBUILD_CFLAGS_MODULE += -mlong-calls
++else
++KBUILD_AFLAGS_MODULE += -mno-long-calls
++KBUILD_CFLAGS_MODULE += -mno-long-calls
++endif
+
+ cflags-y += -ffreestanding
+
+--- a/arch/mips/include/asm/module.h
++++ b/arch/mips/include/asm/module.h
+@@ -11,6 +11,11 @@ struct mod_arch_specific {
+ const struct exception_table_entry *dbe_start;
+ const struct exception_table_entry *dbe_end;
+ struct mips_hi16 *r_mips_hi16_list;
++
++ void *phys_plt_tbl;
++ void *virt_plt_tbl;
++ unsigned int phys_plt_offset;
++ unsigned int virt_plt_offset;
+ };
+
+ typedef uint8_t Elf64_Byte; /* Type for a 8-bit quantity. */
+--- a/arch/mips/kernel/module.c
++++ b/arch/mips/kernel/module.c
+@@ -42,14 +42,219 @@ struct mips_hi16 {
+ static LIST_HEAD(dbe_list);
+ static DEFINE_SPINLOCK(dbe_lock);
+
+-#ifdef MODULE_START
++/*
++ * Get the potential max trampolines size required of the init and
++ * non-init sections. Only used if we cannot find enough contiguous
++ * physically mapped memory to put the module into.
++ */
++static unsigned int
++get_plt_size(const Elf_Ehdr *hdr, const Elf_Shdr *sechdrs,
++ const char *secstrings, unsigned int symindex, bool is_init)
++{
++ unsigned long ret = 0;
++ unsigned int i, j;
++ Elf_Sym *syms;
++
++ /* Everything marked ALLOC (this includes the exported symbols) */
++ for (i = 1; i < hdr->e_shnum; ++i) {
++ unsigned int info = sechdrs[i].sh_info;
++
++ if (sechdrs[i].sh_type != SHT_REL
++ && sechdrs[i].sh_type != SHT_RELA)
++ continue;
++
++ /* Not a valid relocation section? */
++ if (info >= hdr->e_shnum)
++ continue;
++
++ /* Don't bother with non-allocated sections */
++ if (!(sechdrs[info].sh_flags & SHF_ALLOC))
++ continue;
++
++ /* If it's called *.init*, and we're not init, we're
++ not interested */
++ if ((strstr(secstrings + sechdrs[i].sh_name, ".init") != 0)
++ != is_init)
++ continue;
++
++ syms = (Elf_Sym *) sechdrs[symindex].sh_addr;
++ if (sechdrs[i].sh_type == SHT_REL) {
++ Elf_Mips_Rel *rel = (void *) sechdrs[i].sh_addr;
++ unsigned int size = sechdrs[i].sh_size / sizeof(*rel);
++
++ for (j = 0; j < size; ++j) {
++ Elf_Sym *sym;
++
++ if (ELF_MIPS_R_TYPE(rel[j]) != R_MIPS_26)
++ continue;
++
++ sym = syms + ELF_MIPS_R_SYM(rel[j]);
++ if (!is_init && sym->st_shndx != SHN_UNDEF)
++ continue;
++
++ ret += 4 * sizeof(int);
++ }
++ } else {
++ Elf_Mips_Rela *rela = (void *) sechdrs[i].sh_addr;
++ unsigned int size = sechdrs[i].sh_size / sizeof(*rela);
++
++ for (j = 0; j < size; ++j) {
++ Elf_Sym *sym;
++
++ if (ELF_MIPS_R_TYPE(rela[j]) != R_MIPS_26)
++ continue;
++
++ sym = syms + ELF_MIPS_R_SYM(rela[j]);
++ if (!is_init && sym->st_shndx != SHN_UNDEF)
++ continue;
++
++ ret += 4 * sizeof(int);
++ }
++ }
++ }
++
++ return ret;
++}
++
++#ifndef MODULE_START
++static void *alloc_phys(unsigned long size)
++{
++ unsigned order;
++ struct page *page;
++ struct page *p;
++
++ size = PAGE_ALIGN(size);
++ order = get_order(size);
++
++ page = alloc_pages(GFP_KERNEL | __GFP_NORETRY | __GFP_NOWARN |
++ __GFP_THISNODE, order);
++ if (!page)
++ return NULL;
++
++ split_page(page, order);
++
++ for (p = page + (size >> PAGE_SHIFT); p < page + (1 << order); ++p)
++ __free_page(p);
++
++ return page_address(page);
++}
++#endif
++
++static void free_phys(void *ptr, unsigned long size)
++{
++ struct page *page;
++ struct page *end;
++
++ page = virt_to_page(ptr);
++ end = page + (PAGE_ALIGN(size) >> PAGE_SHIFT);
++
++ for (; page < end; ++page)
++ __free_page(page);
++}
++
++
+ void *module_alloc(unsigned long size)
+ {
++#ifdef MODULE_START
+ return __vmalloc_node_range(size, 1, MODULE_START, MODULE_END,
+ GFP_KERNEL, PAGE_KERNEL, -1,
+ __builtin_return_address(0));
++#else
++ void *ptr;
++
++ if (size == 0)
++ return NULL;
++
++ ptr = alloc_phys(size);
++
++ /* If we failed to allocate physically contiguous memory,
++ * fall back to regular vmalloc. The module loader code will
++ * create jump tables to handle long jumps */
++ if (!ptr)
++ return vmalloc(size);
++
++ return ptr;
++#endif
+ }
++
++static inline bool is_phys_addr(void *ptr)
++{
++#ifdef CONFIG_64BIT
++ return (KSEGX((unsigned long)ptr) == CKSEG0);
++#else
++ return (KSEGX(ptr) == KSEG0);
+ #endif
++}
++
++/* Free memory returned from module_alloc */
++void module_free(struct module *mod, void *module_region)
++{
++ if (is_phys_addr(module_region)) {
++ if (mod->module_init == module_region)
++ free_phys(module_region, mod->init_size);
++ else if (mod->module_core == module_region)
++ free_phys(module_region, mod->core_size);
++ else
++ BUG();
++ } else {
++ vfree(module_region);
++ }
++}
++
++static void *__module_alloc(int size, bool phys)
++{
++ void *ptr;
++
++ if (phys)
++ ptr = kmalloc(size, GFP_KERNEL);
++ else
++ ptr = vmalloc(size);
++ return ptr;
++}
++
++static void __module_free(void *ptr)
++{
++ if (is_phys_addr(ptr))
++ kfree(ptr);
++ else
++ vfree(ptr);
++}
++
++int module_frob_arch_sections(Elf_Ehdr *hdr, Elf_Shdr *sechdrs,
++ char *secstrings, struct module *mod)
++{
++ unsigned int symindex = 0;
++ unsigned int core_size, init_size;
++ int i;
++
++ for (i = 1; i < hdr->e_shnum; i++)
++ if (sechdrs[i].sh_type == SHT_SYMTAB)
++ symindex = i;
++
++ core_size = get_plt_size(hdr, sechdrs, secstrings, symindex, false);
++ init_size = get_plt_size(hdr, sechdrs, secstrings, symindex, true);
++
++ mod->arch.phys_plt_offset = 0;
++ mod->arch.virt_plt_offset = 0;
++ mod->arch.phys_plt_tbl = NULL;
++ mod->arch.virt_plt_tbl = NULL;
++
++ if ((core_size + init_size) == 0)
++ return 0;
++
++ mod->arch.phys_plt_tbl = __module_alloc(core_size + init_size, 1);
++ if (!mod->arch.phys_plt_tbl)
++ return -ENOMEM;
++
++ mod->arch.virt_plt_tbl = __module_alloc(core_size + init_size, 0);
++ if (!mod->arch.virt_plt_tbl) {
++ __module_free(mod->arch.phys_plt_tbl);
++ mod->arch.phys_plt_tbl = NULL;
++ return -ENOMEM;
++ }
++
++ return 0;
++}
+
+ int apply_r_mips_none(struct module *me, u32 *location, Elf_Addr v)
+ {
+@@ -63,8 +268,39 @@ static int apply_r_mips_32_rel(struct mo
+ return 0;
+ }
+
++static Elf_Addr add_plt_entry_to(unsigned *plt_offset,
++ void *start, Elf_Addr v)
++{
++ unsigned *tramp = start + *plt_offset;
++ *plt_offset += 4 * sizeof(int);
++
++ /* adjust carry for addiu */
++ if (v & 0x00008000)
++ v += 0x10000;
++
++ tramp[0] = 0x3c190000 | (v >> 16); /* lui t9, hi16 */
++ tramp[1] = 0x27390000 | (v & 0xffff); /* addiu t9, t9, lo16 */
++ tramp[2] = 0x03200008; /* jr t9 */
++ tramp[3] = 0x00000000; /* nop */
++
++ return (Elf_Addr) tramp;
++}
++
++static Elf_Addr add_plt_entry(struct module *me, void *location, Elf_Addr v)
++{
++ if (is_phys_addr(location))
++ return add_plt_entry_to(&me->arch.phys_plt_offset,
++ me->arch.phys_plt_tbl, v);
++ else
++ return add_plt_entry_to(&me->arch.virt_plt_offset,
++ me->arch.virt_plt_tbl, v);
++
++}
++
+ static int apply_r_mips_26_rel(struct module *me, u32 *location, Elf_Addr v)
+ {
++ u32 ofs = *location & 0x03ffffff;
++
+ if (v % 4) {
+ pr_err("module %s: dangerous R_MIPS_26 REL relocation\n",
+ me->name);
+@@ -72,14 +308,17 @@ static int apply_r_mips_26_rel(struct mo
+ }
+
+ if ((v & 0xf0000000) != (((unsigned long)location + 4) & 0xf0000000)) {
+- printk(KERN_ERR
+- "module %s: relocation overflow\n",
+- me->name);
+- return -ENOEXEC;
++ v = add_plt_entry(me, location, v + (ofs << 2));
++ if (!v) {
++ printk(KERN_ERR
++ "module %s: relocation overflow\n",
++ me->name);
++ return -ENOEXEC;
++ }
++ ofs = 0;
+ }
+
+- *location = (*location & ~0x03ffffff) |
+- ((*location + (v >> 2)) & 0x03ffffff);
++ *location = (*location & ~0x03ffffff) | ((ofs + (v >> 2)) & 0x03ffffff);
+
+ return 0;
+ }
+@@ -286,11 +525,32 @@ int module_finalize(const Elf_Ehdr *hdr,
+ list_add(&me->arch.dbe_list, &dbe_list);
+ spin_unlock_irq(&dbe_lock);
+ }
++
++ /* Get rid of the fixup trampoline if we're running the module
++ * from physically mapped address space */
++ if (me->arch.phys_plt_offset == 0) {
++ __module_free(me->arch.phys_plt_tbl);
++ me->arch.phys_plt_tbl = NULL;
++ }
++ if (me->arch.virt_plt_offset == 0) {
++ __module_free(me->arch.virt_plt_tbl);
++ me->arch.virt_plt_tbl = NULL;
++ }
++
+ return 0;
+ }
+
+ void module_arch_cleanup(struct module *mod)
+ {
++ if (mod->arch.phys_plt_tbl) {
++ __module_free(mod->arch.phys_plt_tbl);
++ mod->arch.phys_plt_tbl = NULL;
++ }
++ if (mod->arch.virt_plt_tbl) {
++ __module_free(mod->arch.virt_plt_tbl);
++ mod->arch.virt_plt_tbl = NULL;
++ }
++
+ spin_lock_irq(&dbe_lock);
+ list_del(&mod->arch.dbe_list);
+ spin_unlock_irq(&dbe_lock);