[atheros]: remove atheros target for kernel 2.6.27.
[openwrt.git] / target / linux / atheros / files / drivers / mtd / devices / spiflash.c
1
2 /*
3  * MTD driver for the SPI Flash Memory support.
4  *
5  * Copyright (c) 2005-2006 Atheros Communications Inc.
6  * Copyright (C) 2006-2007 FON Technology, SL.
7  * Copyright (C) 2006-2007 Imre Kaloz <kaloz@openwrt.org>
8  * Copyright (C) 2006-2007 Felix Fietkau <nbd@openwrt.org>
9  *
10  * This code is free software; you can redistribute it and/or modify
11  * it under the terms of the GNU General Public License version 2 as
12  * published by the Free Software Foundation.
13  *
14  */
15
16 /*===========================================================================
17 ** !!!!  VERY IMPORTANT NOTICE !!!!  FLASH DATA STORED IN LITTLE ENDIAN FORMAT
18 **
19 ** This module contains the Serial Flash access routines for the Atheros SOC.
20 ** The Atheros SOC integrates a SPI flash controller that is used to access
21 ** serial flash parts. The SPI flash controller executes in "Little Endian"
22 ** mode. THEREFORE, all WRITES and READS from the MIPS CPU must be
23 ** BYTESWAPPED! The SPI Flash controller hardware by default performs READ
24 ** ONLY byteswapping when accessed via the SPI Flash Alias memory region
25 ** (Physical Address 0x0800_0000 - 0x0fff_ffff). The data stored in the
26 ** flash sectors is stored in "Little Endian" format.
27 **
28 ** The spiflash_write() routine performs byteswapping on all write
29 ** operations.
30 **===========================================================================*/
31
32 #include <linux/kernel.h>
33 #include <linux/module.h>
34 #include <linux/types.h>
35 #include <linux/version.h>
36 #include <linux/errno.h>
37 #include <linux/slab.h>
38 #include <linux/mtd/mtd.h>
39 #include <linux/mtd/partitions.h>
40 #include <linux/platform_device.h>
41 #include <linux/sched.h>
42 #include <linux/squashfs_fs.h>
43 #include <linux/root_dev.h>
44 #include <linux/delay.h>
45 #include <asm/delay.h>
46 #include <asm/io.h>
47 #include "spiflash.h"
48
49 #ifndef __BIG_ENDIAN
50 #error This driver currently only works with big endian CPU.
51 #endif
52
53 #define MAX_PARTS 32
54
55 #define SPIFLASH "spiflash: "
56
57 #define MIN(a,b)        ((a) < (b) ? (a) : (b))
58
59 #define busy_wait(condition, wait) \
60         do { \
61                 while (condition) { \
62                         spin_unlock_bh(&spidata->mutex); \
63                         if (wait > 1) \
64                                 msleep(wait); \
65                         else if ((wait == 1) && need_resched()) \
66                                 schedule(); \
67                         else \
68                                 udelay(1); \
69                         spin_lock_bh(&spidata->mutex); \
70                 } \
71         } while (0)
72
73
74 static __u32 spiflash_regread32(int reg);
75 static void spiflash_regwrite32(int reg, __u32 data);
76 static __u32 spiflash_sendcmd (int op, u32 addr);
77
78 int __init spiflash_init (void);
79 void __exit spiflash_exit (void);
80 static int spiflash_probe_chip (void);
81 static int spiflash_erase (struct mtd_info *mtd,struct erase_info *instr);
82 static int spiflash_read (struct mtd_info *mtd, loff_t from,size_t len,size_t *retlen,u_char *buf);
83 static int spiflash_write (struct mtd_info *mtd,loff_t to,size_t len,size_t *retlen,const u_char *buf);
84
85 /* Flash configuration table */
86 struct flashconfig {
87     __u32 byte_cnt;
88     __u32 sector_cnt;
89     __u32 sector_size;
90     __u32 cs_addrmask;
91 } flashconfig_tbl[MAX_FLASH] =
92     {
93         { 0, 0, 0, 0},
94         { STM_1MB_BYTE_COUNT, STM_1MB_SECTOR_COUNT, STM_1MB_SECTOR_SIZE, 0x0},
95         { STM_2MB_BYTE_COUNT, STM_2MB_SECTOR_COUNT, STM_2MB_SECTOR_SIZE, 0x0},
96         { STM_4MB_BYTE_COUNT, STM_4MB_SECTOR_COUNT, STM_4MB_SECTOR_SIZE, 0x0},
97         { STM_8MB_BYTE_COUNT, STM_8MB_SECTOR_COUNT, STM_8MB_SECTOR_SIZE, 0x0},
98         { STM_16MB_BYTE_COUNT, STM_16MB_SECTOR_COUNT, STM_16MB_SECTOR_SIZE, 0x0}
99     };
100
101 /* Mapping of generic opcodes to STM serial flash opcodes */
102 #define SPI_WRITE_ENABLE    0
103 #define SPI_WRITE_DISABLE   1
104 #define SPI_RD_STATUS       2
105 #define SPI_WR_STATUS       3
106 #define SPI_RD_DATA         4
107 #define SPI_FAST_RD_DATA    5
108 #define SPI_PAGE_PROGRAM    6
109 #define SPI_SECTOR_ERASE    7
110 #define SPI_BULK_ERASE      8
111 #define SPI_DEEP_PWRDOWN    9
112 #define SPI_RD_SIG          10
113 #define SPI_MAX_OPCODES     11
114
115 struct opcodes {
116     __u16 code;
117     __s8 tx_cnt;
118     __s8 rx_cnt;
119 } stm_opcodes[] = {
120         {STM_OP_WR_ENABLE, 1, 0},
121         {STM_OP_WR_DISABLE, 1, 0},
122         {STM_OP_RD_STATUS, 1, 1},
123         {STM_OP_WR_STATUS, 1, 0},
124         {STM_OP_RD_DATA, 4, 4},
125         {STM_OP_FAST_RD_DATA, 5, 0},
126         {STM_OP_PAGE_PGRM, 8, 0},
127         {STM_OP_SECTOR_ERASE, 4, 0},
128         {STM_OP_BULK_ERASE, 1, 0},
129         {STM_OP_DEEP_PWRDOWN, 1, 0},
130         {STM_OP_RD_SIG, 4, 1},
131 };
132
133 /* Driver private data structure */
134 struct spiflash_data {
135         struct  mtd_info       *mtd;
136         struct  mtd_partition  *parsed_parts;     /* parsed partitions */
137         void    *readaddr; /* memory mapped data for read  */
138         void    *mmraddr;  /* memory mapped register space */
139         wait_queue_head_t wq;
140         spinlock_t mutex;
141         int state;
142 };
143 enum {
144         FL_READY,
145         FL_READING,
146         FL_ERASING,
147         FL_WRITING
148 };
149
150 static struct spiflash_data *spidata;
151
152 extern int parse_redboot_partitions(struct mtd_info *master, struct mtd_partition **pparts);
153
154 /***************************************************************************************************/
155
156 static __u32
157 spiflash_regread32(int reg)
158 {
159         volatile __u32 *data = (__u32 *)(spidata->mmraddr + reg);
160
161         return (*data);
162 }
163
164 static void
165 spiflash_regwrite32(int reg, __u32 data)
166 {
167         volatile __u32 *addr = (__u32 *)(spidata->mmraddr + reg);
168
169         *addr = data;
170         return;
171 }
172
173
174 static __u32
175 spiflash_sendcmd (int op, u32 addr)
176 {
177          u32 reg;
178          u32 mask;
179         struct opcodes *ptr_opcode;
180
181         ptr_opcode = &stm_opcodes[op];
182         busy_wait((reg = spiflash_regread32(SPI_FLASH_CTL)) & SPI_CTL_BUSY, 0);
183         spiflash_regwrite32(SPI_FLASH_OPCODE, ((u32) ptr_opcode->code) | (addr << 8));
184
185         reg = (reg & ~SPI_CTL_TX_RX_CNT_MASK) | ptr_opcode->tx_cnt |
186                 (ptr_opcode->rx_cnt << 4) | SPI_CTL_START;
187
188         spiflash_regwrite32(SPI_FLASH_CTL, reg);
189         busy_wait(spiflash_regread32(SPI_FLASH_CTL) & SPI_CTL_BUSY, 0);
190
191         if (!ptr_opcode->rx_cnt)
192                 return 0;
193
194         reg = (__u32) spiflash_regread32(SPI_FLASH_DATA);
195
196         switch (ptr_opcode->rx_cnt) {
197         case 1:
198                         mask = 0x000000ff;
199                         break;
200         case 2:
201                         mask = 0x0000ffff;
202                         break;
203         case 3:
204                         mask = 0x00ffffff;
205                         break;
206         default:
207                         mask = 0xffffffff;
208                         break;
209         }
210         reg &= mask;
211
212         return reg;
213 }
214
215
216
217 /* Probe SPI flash device
218  * Function returns 0 for failure.
219  * and flashconfig_tbl array index for success.
220  */
221 static int
222 spiflash_probe_chip (void)
223 {
224         __u32 sig;
225         int flash_size;
226
227         /* Read the signature on the flash device */
228         spin_lock_bh(&spidata->mutex);
229         sig = spiflash_sendcmd(SPI_RD_SIG, 0);
230         spin_unlock_bh(&spidata->mutex);
231
232         switch (sig) {
233         case STM_8MBIT_SIGNATURE:
234                 flash_size = FLASH_1MB;
235                 break;
236         case STM_16MBIT_SIGNATURE:
237                 flash_size = FLASH_2MB;
238                 break;
239         case STM_32MBIT_SIGNATURE:
240                 flash_size = FLASH_4MB;
241                 break;
242         case STM_64MBIT_SIGNATURE:
243                 flash_size = FLASH_8MB;
244                 break;
245         case STM_128MBIT_SIGNATURE:
246                 flash_size = FLASH_16MB;
247                 break;
248         default:
249                 printk (KERN_WARNING SPIFLASH "Read of flash device signature failed!\n");
250                 return (0);
251         }
252
253         return (flash_size);
254 }
255
256
257 /* wait until the flash chip is ready and grab a lock */
258 static int spiflash_wait_ready(int state)
259 {
260         DECLARE_WAITQUEUE(wait, current);
261
262 retry:
263         spin_lock_bh(&spidata->mutex);
264         if (spidata->state != FL_READY) {
265                 set_current_state(TASK_UNINTERRUPTIBLE);
266                 add_wait_queue(&spidata->wq, &wait);
267                 spin_unlock_bh(&spidata->mutex);
268                 schedule();
269                 remove_wait_queue(&spidata->wq, &wait);
270
271                 if(signal_pending(current))
272                         return 0;
273
274                 goto retry;
275         }
276         spidata->state = state;
277
278         return 1;
279 }
280
281 static inline void spiflash_done(void)
282 {
283         spidata->state = FL_READY;
284         spin_unlock_bh(&spidata->mutex);
285         wake_up(&spidata->wq);
286 }
287
288 static int
289 spiflash_erase (struct mtd_info *mtd,struct erase_info *instr)
290 {
291         struct opcodes *ptr_opcode;
292         u32 temp, reg;
293
294         /* sanity checks */
295         if (instr->addr + instr->len > mtd->size) return (-EINVAL);
296
297         if (!spiflash_wait_ready(FL_ERASING))
298                 return -EINTR;
299
300         spiflash_sendcmd(SPI_WRITE_ENABLE, 0);
301         busy_wait((reg = spiflash_regread32(SPI_FLASH_CTL)) & SPI_CTL_BUSY, 0);
302         reg = spiflash_regread32(SPI_FLASH_CTL);
303
304         ptr_opcode = &stm_opcodes[SPI_SECTOR_ERASE];
305         temp = ((__u32)instr->addr << 8) | (__u32)(ptr_opcode->code);
306         spiflash_regwrite32(SPI_FLASH_OPCODE, temp);
307
308         reg = (reg & ~SPI_CTL_TX_RX_CNT_MASK) | ptr_opcode->tx_cnt | SPI_CTL_START;
309         spiflash_regwrite32(SPI_FLASH_CTL, reg);
310
311         /* this will take some time */
312         spin_unlock_bh(&spidata->mutex);
313         msleep(800);
314         spin_lock_bh(&spidata->mutex);
315
316         busy_wait(spiflash_sendcmd(SPI_RD_STATUS, 0) & SPI_STATUS_WIP, 20);
317         spiflash_done();
318
319         instr->state = MTD_ERASE_DONE;
320         if (instr->callback) instr->callback (instr);
321
322         return 0;
323 }
324
325 static int
326 spiflash_read (struct mtd_info *mtd, loff_t from,size_t len,size_t *retlen,u_char *buf)
327 {
328         u8 *read_addr;
329
330         /* sanity checks */
331         if (!len) return (0);
332         if (from + len > mtd->size) return (-EINVAL);
333
334         /* we always read len bytes */
335         *retlen = len;
336
337         if (!spiflash_wait_ready(FL_READING))
338                 return -EINTR;
339         read_addr = (u8 *)(spidata->readaddr + from);
340         memcpy(buf, read_addr, len);
341         spiflash_done();
342
343         return 0;
344 }
345
346 static int
347 spiflash_write (struct mtd_info *mtd,loff_t to,size_t len,size_t *retlen,const u_char *buf)
348 {
349         u32 opcode, bytes_left;
350
351         *retlen = 0;
352
353         /* sanity checks */
354         if (!len) return (0);
355         if (to + len > mtd->size) return (-EINVAL);
356
357         opcode = stm_opcodes[SPI_PAGE_PROGRAM].code;
358         bytes_left = len;
359
360         do {
361                 u32 xact_len, reg, page_offset, spi_data = 0;
362
363                 xact_len = MIN(bytes_left, sizeof(__u32));
364
365                 /* 32-bit writes cannot span across a page boundary
366                  * (256 bytes). This types of writes require two page
367                  * program operations to handle it correctly. The STM part
368                  * will write the overflow data to the beginning of the
369                  * current page as opposed to the subsequent page.
370                  */
371                 page_offset = (to & (STM_PAGE_SIZE - 1)) + xact_len;
372
373                 if (page_offset > STM_PAGE_SIZE) {
374                         xact_len -= (page_offset - STM_PAGE_SIZE);
375                 }
376
377                 if (!spiflash_wait_ready(FL_WRITING))
378                         return -EINTR;
379
380                 spiflash_sendcmd(SPI_WRITE_ENABLE, 0);
381                 switch (xact_len) {
382                         case 1:
383                                 spi_data = (u32) ((u8) *buf);
384                                 break;
385                         case 2:
386                                 spi_data = (buf[1] << 8) | buf[0];
387                                 break;
388                         case 3:
389                                 spi_data = (buf[2] << 16) | (buf[1] << 8) | buf[0];
390                                 break;
391                         case 4:
392                                 spi_data = (buf[3] << 24) | (buf[2] << 16) |
393                                                         (buf[1] << 8) | buf[0];
394                                 break;
395                         default:
396                                 spi_data = 0;
397                                 break;
398                 }
399
400                 spiflash_regwrite32(SPI_FLASH_DATA, spi_data);
401                 opcode = (opcode & SPI_OPCODE_MASK) | ((__u32)to << 8);
402                 spiflash_regwrite32(SPI_FLASH_OPCODE, opcode);
403
404                 reg = spiflash_regread32(SPI_FLASH_CTL);
405                 reg = (reg & ~SPI_CTL_TX_RX_CNT_MASK) | (xact_len + 4) | SPI_CTL_START;
406                 spiflash_regwrite32(SPI_FLASH_CTL, reg);
407
408                 /* give the chip some time before we start busy waiting */
409                 spin_unlock_bh(&spidata->mutex);
410                 schedule();
411                 spin_lock_bh(&spidata->mutex);
412
413                 busy_wait(spiflash_sendcmd(SPI_RD_STATUS, 0) & SPI_STATUS_WIP, 0);
414                 spiflash_done();
415
416                 bytes_left -= xact_len;
417                 to += xact_len;
418                 buf += xact_len;
419
420                 *retlen += xact_len;
421         } while (bytes_left != 0);
422
423         return 0;
424 }
425
426
427 #ifdef CONFIG_MTD_PARTITIONS
428 static const char *part_probe_types[] = { "cmdlinepart", "RedBoot", "MyLoader", NULL };
429 #endif
430
431
432 static int spiflash_probe(struct platform_device *pdev)
433 {
434         int result = -1;
435         int index, num_parts;
436         struct mtd_info *mtd;
437
438         spidata->mmraddr = ioremap_nocache(SPI_FLASH_MMR, SPI_FLASH_MMR_SIZE);
439         spin_lock_init(&spidata->mutex);
440         init_waitqueue_head(&spidata->wq);
441         spidata->state = FL_READY;
442
443         if (!spidata->mmraddr) {
444                 printk (KERN_WARNING SPIFLASH "Failed to map flash device\n");
445                 kfree(spidata);
446                 spidata = NULL;
447         }
448
449         mtd = kzalloc(sizeof(struct mtd_info), GFP_KERNEL);
450         if (!mtd) {
451                 kfree(spidata);
452                 return -ENXIO;
453         }
454
455         if (!(index = spiflash_probe_chip())) {
456         printk (KERN_WARNING SPIFLASH "Found no serial flash device\n");
457                 goto error;
458         }
459
460         spidata->readaddr = ioremap_nocache(SPI_FLASH_READ, flashconfig_tbl[index].byte_cnt);
461         if (!spidata->readaddr) {
462                 printk (KERN_WARNING SPIFLASH "Failed to map flash device\n");
463                 goto error;
464         }
465
466         mtd->name = "spiflash";
467         mtd->type = MTD_NORFLASH;
468         mtd->flags = (MTD_CAP_NORFLASH|MTD_WRITEABLE);
469         mtd->size = flashconfig_tbl[index].byte_cnt;
470         mtd->erasesize = flashconfig_tbl[index].sector_size;
471         mtd->writesize = 1;
472         mtd->numeraseregions = 0;
473         mtd->eraseregions = NULL;
474         mtd->erase = spiflash_erase;
475         mtd->read = spiflash_read;
476         mtd->write = spiflash_write;
477         mtd->owner = THIS_MODULE;
478
479         /* parse redboot partitions */
480         num_parts = parse_mtd_partitions(mtd, part_probe_types, &spidata->parsed_parts, 0);
481         if (!num_parts)
482                 goto error;
483
484         result = add_mtd_partitions(mtd, spidata->parsed_parts, num_parts);
485         spidata->mtd = mtd;
486
487         return (result);
488
489 error:
490         kfree(mtd);
491         kfree(spidata);
492         return -ENXIO;
493 }
494
495 static int spiflash_remove (struct platform_device *pdev)
496 {
497         del_mtd_partitions (spidata->mtd);
498         kfree(spidata->mtd);
499         return 0;
500 }
501
502 struct platform_driver spiflash_driver = {
503         .driver.name = "spiflash",
504         .probe = spiflash_probe,
505         .remove = spiflash_remove,
506 };
507
508 int __init
509 spiflash_init (void)
510 {
511         spidata = kmalloc(sizeof(struct spiflash_data), GFP_KERNEL);
512         if (!spidata)
513                 return (-ENXIO);
514
515         spin_lock_init(&spidata->mutex);
516         platform_driver_register(&spiflash_driver);
517
518         return 0;
519 }
520
521 void __exit
522 spiflash_exit (void)
523 {
524         kfree(spidata);
525 }
526
527 module_init (spiflash_init);
528 module_exit (spiflash_exit);
529
530 MODULE_LICENSE("GPL");
531 MODULE_AUTHOR("OpenWrt.org, Atheros Communications Inc");
532 MODULE_DESCRIPTION("MTD driver for SPI Flash on Atheros SOC");
533