sync ath9k with latest git code
[openwrt.git] / package / ath9k / src / drivers / net / wireless / ath9k / phy.c
1 /*
2  * Copyright (c) 2008 Atheros Communications Inc.
3  *
4  * Permission to use, copy, modify, and/or distribute this software for any
5  * purpose with or without fee is hereby granted, provided that the above
6  * copyright notice and this permission notice appear in all copies.
7  *
8  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
9  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
10  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
11  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
12  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
13  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
14  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
15  */
16
17 #include "core.h"
18 #include "hw.h"
19 #include "reg.h"
20 #include "phy.h"
21
22 void
23 ath9k_hw_write_regs(struct ath_hal *ah, u_int modesIndex, u_int freqIndex,
24                     int regWrites)
25 {
26         struct ath_hal_5416 *ahp = AH5416(ah);
27
28         REG_WRITE_ARRAY(&ahp->ah_iniBB_RfGain, freqIndex, regWrites);
29 }
30
31 bool
32 ath9k_hw_set_channel(struct ath_hal *ah, struct hal_channel_internal *chan)
33 {
34         u_int32_t channelSel = 0;
35         u_int32_t bModeSynth = 0;
36         u_int32_t aModeRefSel = 0;
37         u_int32_t reg32 = 0;
38         u_int16_t freq;
39         struct chan_centers centers;
40
41         ath9k_hw_get_channel_centers(ah, chan, &centers);
42         freq = centers.synth_center;
43
44         if (freq < 4800) {
45                 u_int32_t txctl;
46
47                 if (((freq - 2192) % 5) == 0) {
48                         channelSel = ((freq - 672) * 2 - 3040) / 10;
49                         bModeSynth = 0;
50                 } else if (((freq - 2224) % 5) == 0) {
51                         channelSel = ((freq - 704) * 2 - 3040) / 10;
52                         bModeSynth = 1;
53                 } else {
54                         DPRINTF(ah->ah_sc, ATH_DBG_CHANNEL,
55                                  "%s: invalid channel %u MHz\n", __func__,
56                                  freq);
57                         return false;
58                 }
59
60                 channelSel = (channelSel << 2) & 0xff;
61                 channelSel = ath9k_hw_reverse_bits(channelSel, 8);
62
63                 txctl = REG_READ(ah, AR_PHY_CCK_TX_CTRL);
64                 if (freq == 2484) {
65
66                         REG_WRITE(ah, AR_PHY_CCK_TX_CTRL,
67                                   txctl | AR_PHY_CCK_TX_CTRL_JAPAN);
68                 } else {
69                         REG_WRITE(ah, AR_PHY_CCK_TX_CTRL,
70                                   txctl & ~AR_PHY_CCK_TX_CTRL_JAPAN);
71                 }
72
73         } else if ((freq % 20) == 0 && freq >= 5120) {
74                 channelSel =
75                     ath9k_hw_reverse_bits(((freq - 4800) / 20 << 2), 8);
76                 aModeRefSel = ath9k_hw_reverse_bits(1, 2);
77         } else if ((freq % 10) == 0) {
78                 channelSel =
79                     ath9k_hw_reverse_bits(((freq - 4800) / 10 << 1), 8);
80                 if (AR_SREV_9100(ah) || AR_SREV_9160_10_OR_LATER(ah))
81                         aModeRefSel = ath9k_hw_reverse_bits(2, 2);
82                 else
83                         aModeRefSel = ath9k_hw_reverse_bits(1, 2);
84         } else if ((freq % 5) == 0) {
85                 channelSel = ath9k_hw_reverse_bits((freq - 4800) / 5, 8);
86                 aModeRefSel = ath9k_hw_reverse_bits(1, 2);
87         } else {
88                 DPRINTF(ah->ah_sc, ATH_DBG_CHANNEL,
89                          "%s: invalid channel %u MHz\n", __func__, freq);
90                 return false;
91         }
92
93         reg32 =
94             (channelSel << 8) | (aModeRefSel << 2) | (bModeSynth << 1) |
95             (1 << 5) | 0x1;
96
97         REG_WRITE(ah, AR_PHY(0x37), reg32);
98
99         ah->ah_curchan = chan;
100
101         AH5416(ah)->ah_curchanRadIndex = -1;
102
103         return true;
104 }
105
106 bool
107 ath9k_hw_ar9280_set_channel(struct ath_hal *ah,
108                             struct hal_channel_internal *chan)
109 {
110         u_int16_t bMode, fracMode, aModeRefSel = 0;
111         u_int32_t freq, ndiv, channelSel = 0, channelFrac = 0, reg32 = 0;
112         struct chan_centers centers;
113         u_int32_t refDivA = 24;
114
115         ath9k_hw_get_channel_centers(ah, chan, &centers);
116         freq = centers.synth_center;
117
118         reg32 = REG_READ(ah, AR_PHY_SYNTH_CONTROL);
119         reg32 &= 0xc0000000;
120
121         if (freq < 4800) {
122                 u_int32_t txctl;
123
124                 bMode = 1;
125                 fracMode = 1;
126                 aModeRefSel = 0;
127                 channelSel = (freq * 0x10000) / 15;
128
129                 txctl = REG_READ(ah, AR_PHY_CCK_TX_CTRL);
130                 if (freq == 2484) {
131
132                         REG_WRITE(ah, AR_PHY_CCK_TX_CTRL,
133                                   txctl | AR_PHY_CCK_TX_CTRL_JAPAN);
134                 } else {
135                         REG_WRITE(ah, AR_PHY_CCK_TX_CTRL,
136                                   txctl & ~AR_PHY_CCK_TX_CTRL_JAPAN);
137                 }
138         } else {
139                 bMode = 0;
140                 fracMode = 0;
141
142                 if ((freq % 20) == 0) {
143                         aModeRefSel = 3;
144                 } else if ((freq % 10) == 0) {
145                         aModeRefSel = 2;
146                 } else {
147                         aModeRefSel = 0;
148
149                         fracMode = 1;
150                         refDivA = 1;
151                         channelSel = (freq * 0x8000) / 15;
152
153                         REG_RMW_FIELD(ah, AR_AN_SYNTH9,
154                                       AR_AN_SYNTH9_REFDIVA, refDivA);
155                 }
156                 if (!fracMode) {
157                         ndiv = (freq * (refDivA >> aModeRefSel)) / 60;
158                         channelSel = ndiv & 0x1ff;
159                         channelFrac = (ndiv & 0xfffffe00) * 2;
160                         channelSel = (channelSel << 17) | channelFrac;
161                 }
162         }
163
164         reg32 = reg32 |
165             (bMode << 29) |
166             (fracMode << 28) | (aModeRefSel << 26) | (channelSel);
167
168         REG_WRITE(ah, AR_PHY_SYNTH_CONTROL, reg32);
169
170         ah->ah_curchan = chan;
171
172         AH5416(ah)->ah_curchanRadIndex = -1;
173
174         return true;
175 }
176
177 static void
178 ath9k_phy_modify_rx_buffer(u_int32_t *rfBuf, u_int32_t reg32,
179                            u_int32_t numBits, u_int32_t firstBit,
180                            u_int32_t column)
181 {
182         u_int32_t tmp32, mask, arrayEntry, lastBit;
183         int32_t bitPosition, bitsLeft;
184
185         tmp32 = ath9k_hw_reverse_bits(reg32, numBits);
186         arrayEntry = (firstBit - 1) / 8;
187         bitPosition = (firstBit - 1) % 8;
188         bitsLeft = numBits;
189         while (bitsLeft > 0) {
190                 lastBit = (bitPosition + bitsLeft > 8) ?
191                     8 : bitPosition + bitsLeft;
192                 mask = (((1 << lastBit) - 1) ^ ((1 << bitPosition) - 1)) <<
193                     (column * 8);
194                 rfBuf[arrayEntry] &= ~mask;
195                 rfBuf[arrayEntry] |= ((tmp32 << bitPosition) <<
196                                       (column * 8)) & mask;
197                 bitsLeft -= 8 - bitPosition;
198                 tmp32 = tmp32 >> (8 - bitPosition);
199                 bitPosition = 0;
200                 arrayEntry++;
201         }
202 }
203
204 bool
205 ath9k_hw_set_rf_regs(struct ath_hal *ah, struct hal_channel_internal *chan,
206                      u_int16_t modesIndex)
207 {
208         struct ath_hal_5416 *ahp = AH5416(ah);
209
210         u_int32_t eepMinorRev;
211         u_int32_t ob5GHz = 0, db5GHz = 0;
212         u_int32_t ob2GHz = 0, db2GHz = 0;
213         int regWrites = 0;
214
215         if (AR_SREV_9280_10_OR_LATER(ah))
216                 return true;
217
218         eepMinorRev = ath9k_hw_get_eeprom(ahp, EEP_MINOR_REV);
219
220         RF_BANK_SETUP(ahp->ah_analogBank0Data, &ahp->ah_iniBank0, 1);
221
222         RF_BANK_SETUP(ahp->ah_analogBank1Data, &ahp->ah_iniBank1, 1);
223
224         RF_BANK_SETUP(ahp->ah_analogBank2Data, &ahp->ah_iniBank2, 1);
225
226         RF_BANK_SETUP(ahp->ah_analogBank3Data, &ahp->ah_iniBank3,
227                       modesIndex);
228         {
229                 int i;
230                 for (i = 0; i < ahp->ah_iniBank6TPC.ia_rows; i++) {
231                         ahp->ah_analogBank6Data[i] =
232                             INI_RA(&ahp->ah_iniBank6TPC, i, modesIndex);
233                 }
234         }
235
236         if (eepMinorRev >= 2) {
237                 if (IS_CHAN_2GHZ(chan)) {
238                         ob2GHz = ath9k_hw_get_eeprom(ahp, EEP_OB_2);
239                         db2GHz = ath9k_hw_get_eeprom(ahp, EEP_DB_2);
240                         ath9k_phy_modify_rx_buffer(ahp->ah_analogBank6Data,
241                                                    ob2GHz, 3, 197, 0);
242                         ath9k_phy_modify_rx_buffer(ahp->ah_analogBank6Data,
243                                                    db2GHz, 3, 194, 0);
244                 } else {
245                         ob5GHz = ath9k_hw_get_eeprom(ahp, EEP_OB_5);
246                         db5GHz = ath9k_hw_get_eeprom(ahp, EEP_DB_5);
247                         ath9k_phy_modify_rx_buffer(ahp->ah_analogBank6Data,
248                                                    ob5GHz, 3, 203, 0);
249                         ath9k_phy_modify_rx_buffer(ahp->ah_analogBank6Data,
250                                                    db5GHz, 3, 200, 0);
251                 }
252         }
253
254         RF_BANK_SETUP(ahp->ah_analogBank7Data, &ahp->ah_iniBank7, 1);
255
256         REG_WRITE_RF_ARRAY(&ahp->ah_iniBank0, ahp->ah_analogBank0Data,
257                            regWrites);
258         REG_WRITE_RF_ARRAY(&ahp->ah_iniBank1, ahp->ah_analogBank1Data,
259                            regWrites);
260         REG_WRITE_RF_ARRAY(&ahp->ah_iniBank2, ahp->ah_analogBank2Data,
261                            regWrites);
262         REG_WRITE_RF_ARRAY(&ahp->ah_iniBank3, ahp->ah_analogBank3Data,
263                            regWrites);
264         REG_WRITE_RF_ARRAY(&ahp->ah_iniBank6TPC, ahp->ah_analogBank6Data,
265                            regWrites);
266         REG_WRITE_RF_ARRAY(&ahp->ah_iniBank7, ahp->ah_analogBank7Data,
267                            regWrites);
268
269         return true;
270 }
271
272 void
273 ath9k_hw_rfdetach(struct ath_hal *ah)
274 {
275         struct ath_hal_5416 *ahp = AH5416(ah);
276
277         if (ahp->ah_analogBank0Data != NULL) {
278                 kfree(ahp->ah_analogBank0Data);
279                 ahp->ah_analogBank0Data = NULL;
280         }
281         if (ahp->ah_analogBank1Data != NULL) {
282                 kfree(ahp->ah_analogBank1Data);
283                 ahp->ah_analogBank1Data = NULL;
284         }
285         if (ahp->ah_analogBank2Data != NULL) {
286                 kfree(ahp->ah_analogBank2Data);
287                 ahp->ah_analogBank2Data = NULL;
288         }
289         if (ahp->ah_analogBank3Data != NULL) {
290                 kfree(ahp->ah_analogBank3Data);
291                 ahp->ah_analogBank3Data = NULL;
292         }
293         if (ahp->ah_analogBank6Data != NULL) {
294                 kfree(ahp->ah_analogBank6Data);
295                 ahp->ah_analogBank6Data = NULL;
296         }
297         if (ahp->ah_analogBank6TPCData != NULL) {
298                 kfree(ahp->ah_analogBank6TPCData);
299                 ahp->ah_analogBank6TPCData = NULL;
300         }
301         if (ahp->ah_analogBank7Data != NULL) {
302                 kfree(ahp->ah_analogBank7Data);
303                 ahp->ah_analogBank7Data = NULL;
304         }
305         if (ahp->ah_addac5416_21 != NULL) {
306                 kfree(ahp->ah_addac5416_21);
307                 ahp->ah_addac5416_21 = NULL;
308         }
309         if (ahp->ah_bank6Temp != NULL) {
310                 kfree(ahp->ah_bank6Temp);
311                 ahp->ah_bank6Temp = NULL;
312         }
313 }
314
315 bool
316 ath9k_hw_get_chip_power_limits(struct ath_hal *ah,
317                                struct hal_channel *chans, u_int32_t nchans)
318 {
319         bool retVal = true;
320         int i;
321
322         for (i = 0; i < nchans; i++) {
323                 chans[i].maxTxPower = AR5416_MAX_RATE_POWER;
324                 chans[i].minTxPower = AR5416_MAX_RATE_POWER;
325         }
326         return retVal;
327 }
328
329
330 bool ath9k_hw_init_rf(struct ath_hal *ah, enum hal_status *status)
331 {
332         struct ath_hal_5416 *ahp = AH5416(ah);
333
334         if (!AR_SREV_9280_10_OR_LATER(ah)) {
335
336                 ahp->ah_analogBank0Data =
337                     kzalloc((sizeof(u_int32_t) *
338                              ahp->ah_iniBank0.ia_rows), GFP_KERNEL);
339                 ahp->ah_analogBank1Data =
340                     kzalloc((sizeof(u_int32_t) *
341                              ahp->ah_iniBank1.ia_rows), GFP_KERNEL);
342                 ahp->ah_analogBank2Data =
343                     kzalloc((sizeof(u_int32_t) *
344                              ahp->ah_iniBank2.ia_rows), GFP_KERNEL);
345                 ahp->ah_analogBank3Data =
346                     kzalloc((sizeof(u_int32_t) *
347                              ahp->ah_iniBank3.ia_rows), GFP_KERNEL);
348                 ahp->ah_analogBank6Data =
349                     kzalloc((sizeof(u_int32_t) *
350                              ahp->ah_iniBank6.ia_rows), GFP_KERNEL);
351                 ahp->ah_analogBank6TPCData =
352                     kzalloc((sizeof(u_int32_t) *
353                              ahp->ah_iniBank6TPC.ia_rows), GFP_KERNEL);
354                 ahp->ah_analogBank7Data =
355                     kzalloc((sizeof(u_int32_t) *
356                              ahp->ah_iniBank7.ia_rows), GFP_KERNEL);
357
358                 if (ahp->ah_analogBank0Data == NULL
359                     || ahp->ah_analogBank1Data == NULL
360                     || ahp->ah_analogBank2Data == NULL
361                     || ahp->ah_analogBank3Data == NULL
362                     || ahp->ah_analogBank6Data == NULL
363                     || ahp->ah_analogBank6TPCData == NULL
364                     || ahp->ah_analogBank7Data == NULL) {
365                         DPRINTF(ah->ah_sc, ATH_DBG_FATAL,
366                                  "%s: cannot allocate RF banks\n",
367                                  __func__);
368                         *status = HAL_ENOMEM;
369                         return false;
370                 }
371
372                 ahp->ah_addac5416_21 =
373                     kzalloc((sizeof(u_int32_t) *
374                              ahp->ah_iniAddac.ia_rows *
375                              ahp->ah_iniAddac.ia_columns), GFP_KERNEL);
376                 if (ahp->ah_addac5416_21 == NULL) {
377                         DPRINTF(ah->ah_sc, ATH_DBG_FATAL,
378                                  "%s: cannot allocate ah_addac5416_21\n",
379                                  __func__);
380                         *status = HAL_ENOMEM;
381                         return false;
382                 }
383
384                 ahp->ah_bank6Temp =
385                     kzalloc((sizeof(u_int32_t) *
386                              ahp->ah_iniBank6.ia_rows), GFP_KERNEL);
387                 if (ahp->ah_bank6Temp == NULL) {
388                         DPRINTF(ah->ah_sc, ATH_DBG_FATAL,
389                                  "%s: cannot allocate ah_bank6Temp\n",
390                                  __func__);
391                         *status = HAL_ENOMEM;
392                         return false;
393                 }
394         }
395
396         return true;
397 }
398
399 void
400 ath9k_hw_decrease_chain_power(struct ath_hal *ah, struct hal_channel *chan)
401 {
402         int i, regWrites = 0;
403         struct ath_hal_5416 *ahp = AH5416(ah);
404         u_int32_t bank6SelMask;
405         u_int32_t *bank6Temp = ahp->ah_bank6Temp;
406
407         switch (ahp->ah_diversityControl) {
408         case HAL_ANT_FIXED_A:
409                 bank6SelMask =
410                     (ahp->
411                      ah_antennaSwitchSwap & ANTSWAP_AB) ? REDUCE_CHAIN_0 :
412                     REDUCE_CHAIN_1;
413                 break;
414         case HAL_ANT_FIXED_B:
415                 bank6SelMask =
416                     (ahp->
417                      ah_antennaSwitchSwap & ANTSWAP_AB) ? REDUCE_CHAIN_1 :
418                     REDUCE_CHAIN_0;
419                 break;
420         case HAL_ANT_VARIABLE:
421                 return;
422                 break;
423         default:
424                 return;
425                 break;
426         }
427
428         for (i = 0; i < ahp->ah_iniBank6.ia_rows; i++)
429                 bank6Temp[i] = ahp->ah_analogBank6Data[i];
430
431         REG_WRITE(ah, AR_PHY_BASE + 0xD8, bank6SelMask);
432
433         ath9k_phy_modify_rx_buffer(bank6Temp, 1, 1, 189, 0);
434         ath9k_phy_modify_rx_buffer(bank6Temp, 1, 1, 190, 0);
435         ath9k_phy_modify_rx_buffer(bank6Temp, 1, 1, 191, 0);
436         ath9k_phy_modify_rx_buffer(bank6Temp, 1, 1, 192, 0);
437         ath9k_phy_modify_rx_buffer(bank6Temp, 1, 1, 193, 0);
438         ath9k_phy_modify_rx_buffer(bank6Temp, 1, 1, 222, 0);
439         ath9k_phy_modify_rx_buffer(bank6Temp, 1, 1, 245, 0);
440         ath9k_phy_modify_rx_buffer(bank6Temp, 1, 1, 246, 0);
441         ath9k_phy_modify_rx_buffer(bank6Temp, 1, 1, 247, 0);
442
443         REG_WRITE_RF_ARRAY(&ahp->ah_iniBank6, bank6Temp, regWrites);
444
445         REG_WRITE(ah, AR_PHY_BASE + 0xD8, 0x00000053);
446 #ifdef ALTER_SWITCH
447         REG_WRITE(ah, PHY_SWITCH_CHAIN_0,
448                   (REG_READ(ah, PHY_SWITCH_CHAIN_0) & ~0x38)
449                   | ((REG_READ(ah, PHY_SWITCH_CHAIN_0) >> 3) & 0x38));
450 #endif
451 }