3143e9ada0642fcf03783c3c64fd2e8a014c6c51
[openwrt.git] / target / linux / ar7-2.6 / files / drivers / net / cpmac.c
1 /*
2  * $Id$
3  * 
4  * Copyright (C) 2006, 2007 OpenWrt.org
5  * 
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License as published by
8  * the Free Software Foundation; either version 2 of the License, or
9  * (at your option) any later version.
10  * 
11  * This program is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14  * GNU General Public License for more details.
15  * 
16  * You should have received a copy of the GNU General Public License
17  * along with this program; if not, write to the Free Software
18  * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
19  */
20
21 #include <linux/module.h>
22 #include <linux/init.h>
23 #include <linux/moduleparam.h>
24
25 #include <linux/sched.h>
26 #include <linux/kernel.h> /* printk() */
27 #include <linux/slab.h>
28 #include <linux/errno.h>
29 #include <linux/types.h>
30 #include <linux/delay.h>
31 #include <linux/version.h>
32
33 #include <linux/netdevice.h>
34 #include <linux/etherdevice.h>
35 #include <linux/ethtool.h>
36 #include <linux/skbuff.h>
37 #include <linux/mii.h>
38 #include <linux/phy.h>
39 #include <linux/platform_device.h>
40 #include <asm/ar7/ar7.h>
41 #include <gpio.h>
42
43 MODULE_AUTHOR("Eugene Konev");
44 MODULE_DESCRIPTION("TI AR7 ethernet driver (CPMAC)");
45 MODULE_LICENSE("GPL");
46
47 static int rx_ring_size = 64;
48 static int disable_napi = 1;
49 module_param(rx_ring_size, int, 64);
50 module_param(disable_napi, int, 0);
51 MODULE_PARM_DESC(rx_ring_size, "Size of rx ring (in skbs)");
52 MODULE_PARM_DESC(disable_napi, "Disable NAPI polling");
53
54 /* Register definitions */
55 struct cpmac_control_regs {
56         volatile u32 revision;
57         volatile u32 control;
58         volatile u32 teardown;
59         volatile u32 unused;
60 } __attribute__ ((packed));
61
62 struct cpmac_int_regs {
63         volatile u32 stat_raw;
64         volatile u32 stat_masked;
65         volatile u32 enable;
66         volatile u32 clear;
67 } __attribute__ ((packed));
68
69 struct cpmac_stats {
70         volatile u32 good;
71         volatile u32 bcast;
72         volatile u32 mcast;
73         volatile u32 pause;
74         volatile u32 crc_error;
75         volatile u32 align_error;
76         volatile u32 oversized;
77         volatile u32 jabber;
78         volatile u32 undersized;
79         volatile u32 fragment;
80         volatile u32 filtered;
81         volatile u32 qos_filtered;
82         volatile u32 octets;
83 } __attribute__ ((packed));
84
85 struct cpmac_regs {
86         struct cpmac_control_regs tx_ctrl;
87         struct cpmac_control_regs rx_ctrl;
88         volatile u32 unused1[56];
89         volatile u32 mbp;
90 /* MBP bits */
91 #define MBP_RXPASSCRC         0x40000000
92 #define MBP_RXQOS             0x20000000
93 #define MBP_RXNOCHAIN         0x10000000
94 #define MBP_RXCMF             0x01000000
95 #define MBP_RXSHORT           0x00800000
96 #define MBP_RXCEF             0x00400000
97 #define MBP_RXPROMISC         0x00200000
98 #define MBP_PROMISCCHAN(chan) (((chan) & 0x7) << 16)
99 #define MBP_RXBCAST           0x00002000
100 #define MBP_BCASTCHAN(chan)   (((chan) & 0x7) << 8)
101 #define MBP_RXMCAST           0x00000020
102 #define MBP_MCASTCHAN(chan)   ((chan) & 0x7)
103         volatile u32 unicast_enable;
104         volatile u32 unicast_clear;
105         volatile u32 max_len;
106         volatile u32 buffer_offset;
107         volatile u32 filter_flow_threshold;
108         volatile u32 unused2[2];
109         volatile u32 flow_thre[8];
110         volatile u32 free_buffer[8];
111         volatile u32 mac_control;
112 #define MAC_TXPTYPE  0x00000200
113 #define MAC_TXPACE   0x00000040
114 #define MAC_MII      0x00000020
115 #define MAC_TXFLOW   0x00000010
116 #define MAC_RXFLOW   0x00000008
117 #define MAC_MTEST    0x00000004
118 #define MAC_LOOPBACK 0x00000002
119 #define MAC_FDX      0x00000001
120         volatile u32 mac_status;
121 #define MACST_QOS    0x4
122 #define MACST_RXFLOW 0x2
123 #define MACST_TXFLOW 0x1
124         volatile u32 emc_control;
125         volatile u32 unused3;
126         struct cpmac_int_regs tx_int;
127         volatile u32 mac_int_vector;
128 /* Int Status bits */
129 #define INTST_STATUS 0x80000
130 #define INTST_HOST   0x40000
131 #define INTST_RX     0x20000
132 #define INTST_TX     0x10000
133         volatile u32 mac_eoi_vector;
134         volatile u32 unused4[2];
135         struct cpmac_int_regs rx_int;
136         volatile u32 mac_int_stat_raw;
137         volatile u32 mac_int_stat_masked;
138         volatile u32 mac_int_enable;
139         volatile u32 mac_int_clear;
140         volatile u32 mac_addr_low[8];
141         volatile u32 mac_addr_mid;
142         volatile u32 mac_addr_high;
143         volatile u32 mac_hash_low;
144         volatile u32 mac_hash_high;
145         volatile u32 boff_test;
146         volatile u32 pac_test;
147         volatile u32 rx_pause;
148         volatile u32 tx_pause;
149         volatile u32 unused5[2];
150         struct cpmac_stats rx_stats;
151         struct cpmac_stats tx_stats;
152         volatile u32 unused6[232];
153         volatile u32 tx_ptr[8];
154         volatile u32 rx_ptr[8];
155         volatile u32 tx_ack[8];
156         volatile u32 rx_ack[8];
157         
158 } __attribute__ ((packed));
159
160 struct cpmac_mdio_regs {
161         volatile u32 version;
162         volatile u32 control;
163 #define MDIOC_IDLE        0x80000000
164 #define MDIOC_ENABLE      0x40000000
165 #define MDIOC_PREAMBLE    0x00100000
166 #define MDIOC_FAULT       0x00080000
167 #define MDIOC_FAULTDETECT 0x00040000
168 #define MDIOC_INTTEST     0x00020000
169 #define MDIOC_CLKDIV(div) ((div) & 0xff)
170         volatile u32 alive;
171         volatile u32 link;
172         struct cpmac_int_regs link_int;
173         struct cpmac_int_regs user_int;
174         u32 unused[20];
175         volatile u32 access;
176 #define MDIO_BUSY       0x80000000
177 #define MDIO_WRITE      0x40000000
178 #define MDIO_REG(reg)   (((reg) & 0x1f) << 21)
179 #define MDIO_PHY(phy)   (((phy) & 0x1f) << 16)
180 #define MDIO_DATA(data) ((data) & 0xffff)
181         volatile u32 physel;
182 } __attribute__ ((packed));
183
184 /* Descriptor */
185 struct cpmac_desc {
186         u32 hw_next;
187         u32 hw_data;
188         u16 buflen;
189         u16 bufflags;
190         u16 datalen;
191         u16 dataflags;
192 /* Flags bits */
193 #define CPMAC_SOP 0x8000
194 #define CPMAC_EOP 0x4000
195 #define CPMAC_OWN 0x2000
196 #define CPMAC_EOQ 0x1000
197         struct sk_buff *skb;
198         struct cpmac_desc *next;
199 } __attribute__ ((packed));
200
201 struct cpmac_priv {
202         struct net_device_stats stats;
203         spinlock_t lock;
204         struct sk_buff *skb_pool;
205         int free_skbs;
206         struct cpmac_desc *rx_head;
207         int tx_head, tx_tail;
208         struct cpmac_desc *desc_ring;
209         struct cpmac_regs *regs;
210         struct mii_bus *mii_bus;
211         struct phy_device *phy;
212         char phy_name[BUS_ID_SIZE];
213         struct plat_cpmac_data *config;
214         int oldlink, oldspeed, oldduplex;
215         u32 msg_enable;
216         struct net_device *dev;
217         struct work_struct alloc_work;
218 };
219
220 static irqreturn_t cpmac_irq(int, void *);
221 static void cpmac_reset(struct net_device *dev);
222 static void cpmac_hw_init(struct net_device *dev);
223 static int cpmac_stop(struct net_device *dev);
224 static int cpmac_open(struct net_device *dev);
225
226 #undef CPMAC_DEBUG
227 #define CPMAC_LOW_THRESH 32
228 #define CPMAC_ALLOC_SIZE 64
229 #define CPMAC_SKB_SIZE 1518
230 #define CPMAC_TX_RING_SIZE 8
231
232 #ifdef CPMAC_DEBUG
233 static void cpmac_dump_regs(u32 *base, int count)
234 {
235         int i;
236         for (i = 0; i < (count + 3) / 4; i++) {
237                 if (i % 4 == 0) printk("\nCPMAC[0x%04x]:", i * 4);
238                 printk(" 0x%08x", *(base + i));
239         }
240         printk("\n");
241 }
242
243 static const char *cpmac_dump_buf(const uint8_t * buf, unsigned size)
244 {
245     static char buffer[3 * 25 + 1];
246     char *p = &buffer[0];
247     if (size > 20)
248         size = 20;
249     while (size-- > 0) {
250         p += sprintf(p, " %02x", *buf++);
251     }
252     return buffer;
253 }
254 #endif
255
256 static int cpmac_mdio_read(struct mii_bus *bus, int phy_id, int regnum)
257 {
258         struct cpmac_mdio_regs *regs = (struct cpmac_mdio_regs *)bus->priv;
259         volatile u32 val;
260
261         while ((val = regs->access) & MDIO_BUSY);
262         regs->access = MDIO_BUSY | MDIO_REG(regnum & 0x1f) |
263                 MDIO_PHY(phy_id & 0x1f);
264         while ((val = regs->access) & MDIO_BUSY);
265
266         return val & 0xffff;
267 }
268
269 static int cpmac_mdio_write(struct mii_bus *bus, int phy_id, int regnum, u16 val)
270 {
271         struct cpmac_mdio_regs *regs = (struct cpmac_mdio_regs *)bus->priv;
272         volatile u32 tmp;
273
274         while ((tmp = regs->access) & MDIO_BUSY);
275         regs->access = MDIO_BUSY | MDIO_WRITE | 
276                 MDIO_REG(regnum & 0x1f) | MDIO_PHY(phy_id & 0x1f) |
277                 val;
278
279         return 0;
280 }
281
282 static int cpmac_mdio_reset(struct mii_bus *bus)
283 {
284         struct cpmac_mdio_regs *regs = (struct cpmac_mdio_regs *)bus->priv;
285
286         ar7_device_reset(AR7_RESET_BIT_MDIO);
287         regs->control = MDIOC_ENABLE |
288                 MDIOC_CLKDIV(ar7_cpmac_freq() / 2200000 - 1);
289
290         return 0;
291 }
292
293 static int mii_irqs[PHY_MAX_ADDR] = { PHY_POLL, };
294
295 static struct mii_bus cpmac_mii = {
296         .name = "cpmac-mii",
297         .read = cpmac_mdio_read,
298         .write = cpmac_mdio_write,
299         .reset = cpmac_mdio_reset,
300         .irq = mii_irqs,
301 };
302
303 static int cpmac_config(struct net_device *dev, struct ifmap *map)
304 {
305         if (dev->flags & IFF_UP)
306                 return -EBUSY;
307
308         /* Don't allow changing the I/O address */
309         if (map->base_addr != dev->base_addr)
310                 return -EOPNOTSUPP;
311
312         /* ignore other fields */
313         return 0;
314 }
315
316 static int cpmac_set_mac_address(struct net_device *dev, void *addr)
317 {
318         struct sockaddr *sa = addr;
319
320         if (dev->flags & IFF_UP)
321                 return -EBUSY;
322
323         memcpy(dev->dev_addr, sa->sa_data, dev->addr_len);
324
325         return 0;
326 }
327
328 static void cpmac_set_multicast_list(struct net_device *dev)
329 {
330         struct dev_mc_list *iter;
331         int i;
332         int hash, tmp;
333         int hashlo = 0, hashhi = 0;
334         struct cpmac_priv *priv = netdev_priv(dev);
335
336         if(dev->flags & IFF_PROMISC) {
337                 priv->regs->mbp &= ~MBP_PROMISCCHAN(0); /* promisc channel 0 */
338                 priv->regs->mbp |= MBP_RXPROMISC;
339         } else {
340                 priv->regs->mbp &= ~MBP_RXPROMISC;
341                 if(dev->flags & IFF_ALLMULTI) {
342                         /* enable all multicast mode */
343                         priv->regs->mac_hash_low = 0xffffffff;
344                         priv->regs->mac_hash_high = 0xffffffff;
345                 } else {
346                         for(i = 0, iter = dev->mc_list; i < dev->mc_count;
347                             i++, iter = iter->next) {
348                                 hash = 0;
349                                 tmp = iter->dmi_addr[0];
350                                 hash  ^= (tmp >> 2) ^ (tmp << 4);
351                                 tmp = iter->dmi_addr[1];
352                                 hash  ^= (tmp >> 4) ^ (tmp << 2);
353                                 tmp = iter->dmi_addr[2];
354                                 hash  ^= (tmp >> 6) ^ tmp;
355                                 tmp = iter->dmi_addr[4];
356                                 hash  ^= (tmp >> 2) ^ (tmp << 4);
357                                 tmp = iter->dmi_addr[5];
358                                 hash  ^= (tmp >> 4) ^ (tmp << 2);
359                                 tmp = iter->dmi_addr[6];
360                                 hash  ^= (tmp >> 6) ^ tmp;
361                                 hash &= 0x3f;
362                                 if(hash < 32) {
363                                         hashlo |= 1<<hash;
364                                 } else {
365                                         hashhi |= 1<<(hash - 32);
366                                 }
367                         }
368
369                         priv->regs->mac_hash_low = hashlo;
370                         priv->regs->mac_hash_high = hashhi;
371                 }
372         }
373 }
374
375 static struct sk_buff *cpmac_get_skb(struct net_device *dev) 
376 {
377         struct sk_buff *skb;
378         struct cpmac_priv *priv = netdev_priv(dev);
379
380         skb = priv->skb_pool;
381         if (likely(skb)) {
382                 priv->skb_pool = skb->next;
383         } else {
384                 skb = dev_alloc_skb(CPMAC_SKB_SIZE + 2);
385                 if (skb) {
386                         skb->next = NULL;
387                         skb_reserve(skb, 2);
388                         skb->dev = priv->dev;
389                 }
390         }
391
392         if (likely(priv->free_skbs))
393                 priv->free_skbs--;
394
395         if (priv->free_skbs < CPMAC_LOW_THRESH)
396                 schedule_work(&priv->alloc_work);
397
398         return skb;
399 }
400
401 static inline struct sk_buff *cpmac_rx_one(struct net_device *dev, 
402                                            struct cpmac_priv *priv,
403                                            struct cpmac_desc *desc)
404 {
405         unsigned long flags;
406         char *data;
407         struct sk_buff *skb, *result = NULL;
408
409         priv->regs->rx_ack[0] = virt_to_phys(desc);
410         if (unlikely(!desc->datalen)) {
411                 if (printk_ratelimit())
412                         printk(KERN_WARNING "%s: rx: spurious interrupt\n",
413                                dev->name);
414                 priv->stats.rx_errors++;
415                 return NULL;
416         }
417
418         spin_lock_irqsave(&priv->lock, flags);
419         skb = cpmac_get_skb(dev);
420         if (likely(skb)) {
421                 data = (char *)phys_to_virt(desc->hw_data);
422                 dma_cache_inv((u32)data, desc->datalen);
423                 skb_put(desc->skb, desc->datalen);
424                 desc->skb->protocol = eth_type_trans(desc->skb, dev);
425                 desc->skb->ip_summed = CHECKSUM_NONE;
426                 priv->stats.rx_packets++;
427                 priv->stats.rx_bytes += desc->datalen;
428                 result = desc->skb;
429                 desc->skb = skb;
430         } else {
431 #ifdef CPMAC_DEBUG
432                 if (printk_ratelimit())
433                         printk("%s: low on skbs, dropping packet\n",
434                                dev->name);
435 #endif
436                 priv->stats.rx_dropped++;
437         }
438         spin_unlock_irqrestore(&priv->lock, flags);
439
440         desc->hw_data = virt_to_phys(desc->skb->data);
441         desc->buflen = CPMAC_SKB_SIZE;
442         desc->dataflags = CPMAC_OWN;
443         dma_cache_wback((u32)desc, 16);
444
445         return result;
446 }
447
448 static void cpmac_rx(struct net_device *dev)
449 {
450         struct sk_buff *skb;
451         struct cpmac_desc *desc;
452         struct cpmac_priv *priv = netdev_priv(dev);
453
454         spin_lock(&priv->lock);
455         if (unlikely(!priv->rx_head)) {
456                 spin_unlock(&priv->lock);
457                 return;
458         }
459
460         desc = priv->rx_head;
461         dma_cache_inv((u32)desc, 16);
462 #ifdef CPMAC_DEBUG
463                 printk(KERN_DEBUG "%s: len=%d, %s\n", __func__, pkt->datalen,
464                       cpmac_dump_buf(data, pkt->datalen));
465 #endif
466
467         while ((desc->dataflags & CPMAC_OWN) == 0) {
468                 skb = cpmac_rx_one(dev, priv, desc);
469                 if (likely(skb)) {
470                         netif_rx(skb);
471                 }
472                 desc = desc->next;
473                 dma_cache_inv((u32)desc, 16);
474         }
475
476         priv->rx_head = desc;
477         priv->regs->rx_ptr[0] = virt_to_phys(desc);
478         spin_unlock(&priv->lock);
479 }
480
481 static int cpmac_poll(struct net_device *dev, int *budget)
482 {
483         struct sk_buff *skb;
484         struct cpmac_desc *desc;
485         int received = 0, quota = min(dev->quota, *budget);
486         struct cpmac_priv *priv = netdev_priv(dev);
487
488         if (unlikely(!priv->rx_head)) {
489                 if (printk_ratelimit())
490                         printk(KERN_WARNING "%s: rx: polling, but no queue\n",
491                                dev->name);
492                 netif_rx_complete(dev);
493                 return 0;
494         }
495
496         desc = priv->rx_head;
497         dma_cache_inv((u32)desc, 16);
498         
499         while ((received < quota) && ((desc->dataflags & CPMAC_OWN) == 0)) {
500                 skb = cpmac_rx_one(dev, priv, desc);
501                 if (likely(skb)) {
502                         netif_receive_skb(skb);
503                         received++;
504                 }
505                 desc = desc->next;
506                 priv->rx_head = desc;
507                 dma_cache_inv((u32)desc, 16);
508         }
509
510         *budget -= received;
511         dev->quota -= received;
512 #ifdef CPMAC_DEBUG
513         printk("%s: processed %d packets\n", dev->name, received);
514 #endif
515         if (desc->dataflags & CPMAC_OWN) {
516                 priv->regs->rx_ptr[0] = virt_to_phys(desc);
517                 netif_rx_complete(dev);
518                 priv->regs->rx_int.enable = 0x1;
519                 priv->regs->rx_int.clear = 0xfe;
520                 return 0;
521         }
522
523         return 1;
524 }
525
526 #if LINUX_VERSION_CODE >= KERNEL_VERSION(2, 6, 20)
527 static void
528 cpmac_alloc_skbs(struct work_struct *work)
529 {
530         struct cpmac_priv *priv = container_of(work, struct cpmac_priv,
531                                                alloc_work);
532 #else
533 static void
534 cpmac_alloc_skbs(void *data)
535 {
536         struct net_device *dev = (struct net_device*)data;
537         struct cpmac_priv *priv = netdev_priv(dev);
538 #endif
539         unsigned long flags;
540         int i, num_skbs = 0;
541         struct sk_buff *skb, *skbs = NULL;
542
543         for (i = 0; i < CPMAC_ALLOC_SIZE; i++) {
544                 skb = alloc_skb(CPMAC_SKB_SIZE + 2, GFP_KERNEL);
545                 if (!skb)
546                         break;
547                 skb->next = skbs;
548                 skb_reserve(skb, 2);
549                 skb->dev = priv->dev;
550                 num_skbs++;
551                 skbs = skb;
552         }
553
554         if (skbs) {
555                 spin_lock_irqsave(&priv->lock, flags);
556                 for (skb = priv->skb_pool; skb && skb->next; skb = skb->next);
557                 if (!skb) {
558                         priv->skb_pool = skbs;
559                 } else {
560                         skb->next = skbs;
561                 }
562                 priv->free_skbs += num_skbs;
563                 spin_unlock_irqrestore(&priv->lock, flags);
564 #ifdef CPMAC_DEBUG
565                 printk("%s: allocated %d skbs\n", priv->dev->name, num_skbs);
566 #endif
567         }
568 }
569
570 static int cpmac_start_xmit(struct sk_buff *skb, struct net_device *dev)
571 {
572         unsigned long flags;
573         int len, chan;
574         struct cpmac_desc *desc;
575         struct cpmac_priv *priv = netdev_priv(dev);
576
577         len = skb->len;
578 #ifdef CPMAC_DEBUG
579         printk(KERN_DEBUG "%s: len=%d\n", __func__, len); //cpmac_dump_buf(const uint8_t * buf, unsigned size)
580 #endif
581         if (unlikely(len < ETH_ZLEN)) {
582                 if (unlikely(skb_padto(skb, ETH_ZLEN))) {
583                         if (printk_ratelimit())
584                                 printk(KERN_NOTICE "%s: padding failed, dropping\n",
585                                        dev->name); 
586                         spin_lock_irqsave(&priv->lock, flags);
587                         priv->stats.tx_dropped++;
588                         spin_unlock_irqrestore(&priv->lock, flags);
589                         return -ENOMEM;
590                 }
591                 len = ETH_ZLEN;
592         }
593         spin_lock_irqsave(&priv->lock, flags);
594         chan = priv->tx_tail++;
595         priv->tx_tail %= 8;
596         if (priv->tx_tail == priv->tx_head)
597                 netif_stop_queue(dev);
598
599         desc = &priv->desc_ring[chan];
600         dma_cache_inv((u32)desc, 16);
601         if (desc->dataflags & CPMAC_OWN) {
602                 printk(KERN_NOTICE "%s: tx dma ring full, dropping\n", dev->name);
603                 priv->stats.tx_dropped++;
604                 spin_unlock_irqrestore(&priv->lock, flags);
605                 return -ENOMEM;
606         }
607
608         dev->trans_start = jiffies;
609         desc->dataflags = CPMAC_SOP | CPMAC_EOP | CPMAC_OWN;
610         desc->skb = skb;
611         desc->hw_data = virt_to_phys(skb->data);
612         dma_cache_wback((u32)skb->data, len);
613         desc->buflen = len;
614         desc->datalen = len;
615         desc->hw_next = 0;
616         dma_cache_wback((u32)desc, 16);
617         priv->regs->tx_ptr[chan] = virt_to_phys(desc);
618         spin_unlock_irqrestore(&priv->lock, flags);
619
620         return 0;
621 }
622
623 static void cpmac_end_xmit(struct net_device *dev, int channel)
624 {
625         struct cpmac_desc *desc;
626         struct cpmac_priv *priv = netdev_priv(dev);
627
628         spin_lock(&priv->lock);
629         desc = &priv->desc_ring[channel];
630         priv->regs->tx_ack[channel] = virt_to_phys(desc);
631         if (likely(desc->skb)) {
632                 priv->stats.tx_packets++;
633                 priv->stats.tx_bytes += desc->skb->len;
634                 dev_kfree_skb_irq(desc->skb);
635                 if (netif_queue_stopped(dev))
636                         netif_wake_queue(dev);
637         } else {
638                 if (printk_ratelimit())
639                         printk(KERN_NOTICE "%s: end_xmit: spurious interrupt\n",
640                                dev->name); 
641         }
642         spin_unlock(&priv->lock);
643 }
644
645 static void cpmac_reset(struct net_device *dev)
646 {
647         int i;
648         struct cpmac_priv *priv = netdev_priv(dev);
649
650         ar7_device_reset(priv->config->reset_bit);
651         priv->regs->rx_ctrl.control &= ~1;
652         priv->regs->tx_ctrl.control &= ~1;
653         for (i = 0; i < 8; i++) {
654                 priv->regs->tx_ptr[i] = 0;
655                 priv->regs->rx_ptr[i] = 0;
656         }
657         priv->regs->mac_control &= ~MAC_MII; /* disable mii */
658 }
659
660 static inline void cpmac_free_rx_ring(struct net_device *dev)
661 {
662         struct cpmac_desc *desc;
663         int i;
664         struct cpmac_priv *priv = netdev_priv(dev);
665
666         if (unlikely(!priv->rx_head))
667                 return;
668
669         desc = priv->rx_head;
670         dma_cache_inv((u32)desc, 16);
671         
672         for (i = 0; i < rx_ring_size; i++) {
673                 desc->buflen = CPMAC_SKB_SIZE;
674                 if ((desc->dataflags & CPMAC_OWN) == 0) {
675                         desc->dataflags = CPMAC_OWN;
676                         priv->stats.rx_dropped++;
677                 }
678                 dma_cache_wback((u32)desc, 16);
679                 desc = desc->next;
680                 dma_cache_inv((u32)desc, 16);
681         }
682 }
683
684 static irqreturn_t cpmac_irq(int irq, void *dev_id)
685 {
686         struct net_device *dev = (struct net_device *)dev_id;
687         struct cpmac_priv *priv = netdev_priv(dev);
688         u32 status;
689
690         if (!dev)
691                 return IRQ_NONE;
692
693         status = priv->regs->mac_int_vector;
694
695         if (status & INTST_TX) {
696                 cpmac_end_xmit(dev, (status & 7));
697         }
698
699         if (status & INTST_RX) {
700                 if (disable_napi) {
701                         cpmac_rx(dev);
702                 } else {
703                         priv->regs->rx_int.enable = 0;
704                         priv->regs->rx_int.clear = 0xff;
705                         netif_rx_schedule(dev);
706                 }
707         }
708
709         priv->regs->mac_eoi_vector = 0;
710
711         if (unlikely(status & (INTST_HOST | INTST_STATUS))) {
712                 if (printk_ratelimit()) {
713                         printk(KERN_ERR "%s: hw error, resetting...\n", dev->name);
714                 }
715                 spin_lock(&priv->lock);
716                 phy_stop(priv->phy);
717                 cpmac_reset(dev);
718                 cpmac_free_rx_ring(dev);
719                 cpmac_hw_init(dev);
720                 spin_unlock(&priv->lock);
721         }
722
723         return IRQ_HANDLED;
724 }
725
726 static void cpmac_tx_timeout(struct net_device *dev)
727 {
728         struct cpmac_priv *priv = netdev_priv(dev);
729         struct cpmac_desc *desc;
730
731         priv->stats.tx_errors++;
732         desc = &priv->desc_ring[priv->tx_head++];
733         priv->tx_head %= 8;
734         printk("%s: transmit timeout\n", dev->name);
735         if (desc->skb)
736                 dev_kfree_skb(desc->skb);
737         netif_wake_queue(dev);
738 }
739
740 static int cpmac_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
741 {
742         struct cpmac_priv *priv = netdev_priv(dev);
743         if (!(netif_running(dev)))
744                 return -EINVAL;
745         if (!priv->phy)
746                 return -EINVAL;
747         if ((cmd == SIOCGMIIPHY) || (cmd == SIOCGMIIREG) || 
748             (cmd == SIOCSMIIREG))
749                 return phy_mii_ioctl(priv->phy, if_mii(ifr), cmd);
750
751         return -EINVAL;
752 }
753
754 static int cpmac_get_settings(struct net_device *dev, struct ethtool_cmd *cmd)
755 {
756         struct cpmac_priv *priv = netdev_priv(dev);
757
758         if (priv->phy)
759                 return phy_ethtool_gset(priv->phy, cmd);
760
761         return -EINVAL;
762 }
763
764 static int cpmac_set_settings(struct net_device *dev, struct ethtool_cmd *cmd)
765 {
766         struct cpmac_priv *priv = netdev_priv(dev);
767
768         if (!capable(CAP_NET_ADMIN))
769                 return -EPERM;
770
771         if (priv->phy)
772                 return phy_ethtool_sset(priv->phy, cmd);
773
774         return -EINVAL;
775 }
776
777 static void cpmac_get_drvinfo(struct net_device *dev, 
778                               struct ethtool_drvinfo *info)
779 {
780         strcpy(info->driver, "cpmac");
781         strcpy(info->version, "0.0.3");
782         info->fw_version[0] = '\0';
783         sprintf(info->bus_info, "%s", "cpmac");
784         info->regdump_len = 0;
785 }
786
787 static const struct ethtool_ops cpmac_ethtool_ops = {
788         .get_settings = cpmac_get_settings,
789         .set_settings = cpmac_set_settings,
790         .get_drvinfo = cpmac_get_drvinfo,
791         .get_link = ethtool_op_get_link,
792 };
793
794 static struct net_device_stats *cpmac_stats(struct net_device *dev)
795 {
796         struct cpmac_priv *priv = netdev_priv(dev);
797
798         if (netif_device_present(dev))
799                 return &priv->stats;
800
801         return NULL;
802 }
803
804 static int cpmac_change_mtu(struct net_device *dev, int mtu)
805 {
806         unsigned long flags;
807         struct cpmac_priv *priv = netdev_priv(dev);
808         spinlock_t *lock = &priv->lock;
809     
810         if ((mtu < 68) || (mtu > 1500))
811                 return -EINVAL;
812
813         spin_lock_irqsave(lock, flags);
814         dev->mtu = mtu;
815         spin_unlock_irqrestore(lock, flags);
816
817         return 0;
818 }
819
820 static void cpmac_adjust_link(struct net_device *dev)
821 {
822         struct cpmac_priv *priv = netdev_priv(dev);
823         unsigned long flags;
824         int new_state = 0;
825
826         spin_lock_irqsave(&priv->lock, flags);
827         if (priv->phy->link) {
828                 if (priv->phy->duplex != priv->oldduplex) {
829                         new_state = 1;
830                         priv->oldduplex = priv->phy->duplex;
831                 }
832
833                 if (priv->phy->speed != priv->oldspeed) {
834                         new_state = 1;
835                         priv->oldspeed = priv->phy->speed;
836                 }
837
838                 if (!priv->oldlink) {
839                         new_state = 1;
840                         priv->oldlink = 1;
841                         netif_schedule(dev);
842                 }
843         } else if (priv->oldlink) {
844                 new_state = 1;
845                 priv->oldlink = 0;
846                 priv->oldspeed = 0;
847                 priv->oldduplex = -1;
848         }
849
850         if (new_state)
851                 phy_print_status(priv->phy);
852
853         spin_unlock_irqrestore(&priv->lock, flags);
854 }
855
856 static void cpmac_hw_init(struct net_device *dev)
857 {
858         int i;
859         struct cpmac_priv *priv = netdev_priv(dev);
860
861         for (i = 0; i < 8; i++)
862                 priv->regs->tx_ptr[i] = 0;
863         priv->regs->rx_ptr[0] = virt_to_phys(priv->rx_head);
864
865         priv->regs->mbp = MBP_RXSHORT | MBP_RXBCAST | MBP_RXMCAST;
866         priv->regs->unicast_enable = 0x1;
867         priv->regs->unicast_clear = 0xfe;
868         priv->regs->buffer_offset = 0;
869         for (i = 0; i < 8; i++)
870                 priv->regs->mac_addr_low[i] = dev->dev_addr[5];
871         priv->regs->mac_addr_mid = dev->dev_addr[4];
872         priv->regs->mac_addr_high = dev->dev_addr[0] | (dev->dev_addr[1] << 8)
873                 | (dev->dev_addr[2] << 16) | (dev->dev_addr[3] << 24);
874         priv->regs->max_len = CPMAC_SKB_SIZE;
875         priv->regs->rx_int.enable = 0x1;
876         priv->regs->rx_int.clear = 0xfe;
877         priv->regs->tx_int.enable = 0xff;
878         priv->regs->tx_int.clear = 0;
879         priv->regs->mac_int_enable = 3;
880         priv->regs->mac_int_clear = 0xfc;
881
882         priv->regs->rx_ctrl.control |= 1;
883         priv->regs->tx_ctrl.control |= 1;
884         priv->regs->mac_control |= MAC_MII | MAC_FDX;
885
886         priv->phy->state = PHY_CHANGELINK;
887         phy_start(priv->phy);
888 }
889
890 static int cpmac_open(struct net_device *dev)
891 {
892         int i, size, res;
893         struct cpmac_priv *priv = netdev_priv(dev);
894         struct cpmac_desc *desc;
895         struct sk_buff *skb;
896
897 #if LINUX_VERSION_CODE >= KERNEL_VERSION(2, 6, 20)
898         priv->phy = phy_connect(dev, priv->phy_name, &cpmac_adjust_link,
899                                 0, PHY_INTERFACE_MODE_MII);
900 #else
901         priv->phy = phy_connect(dev, priv->phy_name, &cpmac_adjust_link, 0);
902 #endif
903         if (IS_ERR(priv->phy)) {
904                 printk(KERN_ERR "%s: Could not attach to PHY\n", dev->name);
905                 return PTR_ERR(priv->phy);
906         }
907
908         if (!request_mem_region(dev->mem_start, dev->mem_end -
909                                 dev->mem_start, dev->name)) {
910                 printk("%s: failed to request registers\n",
911                        dev->name); 
912                 res = -ENXIO;
913                 goto fail_reserve;
914         }
915
916         priv->regs = ioremap_nocache(dev->mem_start, dev->mem_end -
917                                      dev->mem_start);
918         if (!priv->regs) {
919                 printk("%s: failed to remap registers\n", dev->name);
920                 res = -ENXIO;
921                 goto fail_remap;
922         }
923
924         priv->rx_head = NULL;
925         size = sizeof(struct cpmac_desc) * (rx_ring_size +
926                                             CPMAC_TX_RING_SIZE);
927         priv->desc_ring = (struct cpmac_desc *)kmalloc(size, GFP_KERNEL);
928         if (!priv->desc_ring) {
929                 res = -ENOMEM;
930                 goto fail_alloc;
931         }
932
933         memset((char *)priv->desc_ring, 0, size);
934
935         priv->skb_pool = NULL;
936         priv->free_skbs = 0;
937         priv->rx_head = &priv->desc_ring[CPMAC_TX_RING_SIZE];
938
939 #if LINUX_VERSION_CODE >= KERNEL_VERSION(2, 6, 20)
940         INIT_WORK(&priv->alloc_work, cpmac_alloc_skbs);
941 #else
942         INIT_WORK(&priv->alloc_work, cpmac_alloc_skbs, dev);
943 #endif
944         schedule_work(&priv->alloc_work);
945         flush_scheduled_work();
946
947         for (i = 0; i < rx_ring_size; i++) {
948                 desc = &priv->rx_head[i];
949                 skb = cpmac_get_skb(dev);
950                 if (!skb) {
951                         res = -ENOMEM;
952                         goto fail_desc;
953                 }
954                 desc->skb = skb;
955                 desc->hw_data = virt_to_phys(skb->data);
956                 desc->buflen = CPMAC_SKB_SIZE;
957                 desc->dataflags = CPMAC_OWN;
958                 desc->next = &priv->rx_head[(i + 1) % rx_ring_size];
959                 desc->hw_next = virt_to_phys(desc->next);
960                 dma_cache_wback((u32)desc, 16);
961         }
962
963         if((res = request_irq(dev->irq, cpmac_irq, SA_INTERRUPT,
964                               dev->name, dev))) {
965                 printk("%s: failed to obtain irq\n", dev->name);
966                 goto fail_irq;
967         }
968
969         cpmac_reset(dev);
970         cpmac_hw_init(dev);
971
972         netif_start_queue(dev);
973         return 0;
974
975 fail_irq:
976 fail_desc:
977         for (i = 0; i < rx_ring_size; i++)
978                 if (priv->rx_head[i].skb)
979                         kfree_skb(priv->rx_head[i].skb);
980 fail_alloc:
981         kfree(priv->desc_ring);
982
983         for (skb = priv->skb_pool; skb; skb = priv->skb_pool) {
984                 priv->skb_pool = skb->next;
985                 kfree_skb(skb);
986         }
987
988         iounmap(priv->regs);
989
990 fail_remap:
991         release_mem_region(dev->mem_start, dev->mem_end -
992                            dev->mem_start);
993
994 fail_reserve:
995         phy_disconnect(priv->phy);
996
997         return res;
998 }
999
1000 static int cpmac_stop(struct net_device *dev)
1001 {
1002         int i;
1003         struct sk_buff *skb;
1004         struct cpmac_priv *priv = netdev_priv(dev);
1005
1006         netif_stop_queue(dev);
1007
1008         phy_stop(priv->phy);
1009         phy_disconnect(priv->phy);
1010         priv->phy = NULL;
1011
1012         cpmac_reset(dev);
1013
1014         for (i = 0; i < 8; i++) {
1015                 priv->regs->rx_ptr[i] = 0;
1016                 priv->regs->tx_ptr[i] = 0;
1017                 priv->regs->mbp = 0;
1018         }
1019
1020         free_irq(dev->irq, dev);
1021         release_mem_region(dev->mem_start, dev->mem_end -
1022                            dev->mem_start);
1023
1024         cancel_delayed_work(&priv->alloc_work);
1025         flush_scheduled_work();
1026
1027         priv->rx_head = &priv->desc_ring[CPMAC_TX_RING_SIZE];
1028         for (i = 0; i < rx_ring_size; i++)
1029                 if (priv->rx_head[i].skb)
1030                         kfree_skb(priv->rx_head[i].skb);
1031
1032         kfree(priv->desc_ring);
1033
1034         for (skb = priv->skb_pool; skb; skb = priv->skb_pool) {
1035                 priv->skb_pool = skb->next;
1036                 kfree_skb(skb);
1037         }
1038
1039         return 0;
1040 }
1041
1042 static int external_switch = 0;
1043
1044 static int __devinit cpmac_probe(struct platform_device *pdev)
1045 {
1046         int i, rc, phy_id;
1047         struct resource *res;
1048         struct cpmac_priv *priv;
1049         struct net_device *dev;
1050         struct plat_cpmac_data *pdata;
1051
1052         if (strcmp(pdev->name, "cpmac") != 0)
1053                 return -ENODEV;
1054
1055         pdata = pdev->dev.platform_data;
1056
1057         for (phy_id = 0; phy_id < PHY_MAX_ADDR; phy_id++) {
1058                 if (!(pdata->phy_mask & (1 << phy_id)))
1059                         continue;
1060                 if (!cpmac_mii.phy_map[phy_id])
1061                         continue;
1062                 break;
1063         }
1064
1065         if (phy_id == PHY_MAX_ADDR) {
1066                 if (external_switch) {
1067                         phy_id = 0;
1068                 } else {
1069                         printk("cpmac: no PHY present\n");
1070                         return -ENODEV;
1071                 }
1072         }
1073
1074         dev = alloc_etherdev(sizeof(struct cpmac_priv));
1075
1076         if (!dev) {
1077                 printk(KERN_ERR "cpmac: Unable to allocate net_device structure!\n");
1078                 return -ENOMEM;
1079         }
1080
1081         SET_MODULE_OWNER(dev);
1082         platform_set_drvdata(pdev, dev);
1083         priv = netdev_priv(dev);
1084
1085         res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "regs");
1086         if (!res) {
1087                 rc = -ENODEV;
1088                 goto fail;
1089         }
1090
1091         dev->mem_start = res->start;
1092         dev->mem_end = res->end;
1093         dev->irq = platform_get_irq_byname(pdev, "irq");
1094
1095         dev->mtu                = 1500;
1096         dev->open               = cpmac_open;
1097         dev->stop               = cpmac_stop;
1098         dev->set_config         = cpmac_config;
1099         dev->hard_start_xmit    = cpmac_start_xmit;
1100         dev->do_ioctl           = cpmac_ioctl;
1101         dev->get_stats          = cpmac_stats;
1102         dev->change_mtu         = cpmac_change_mtu;  
1103         dev->set_mac_address    = cpmac_set_mac_address;  
1104         dev->set_multicast_list = cpmac_set_multicast_list;
1105         dev->tx_timeout         = cpmac_tx_timeout;
1106         dev->ethtool_ops        = &cpmac_ethtool_ops;
1107         if (!disable_napi) {
1108                 dev->poll = cpmac_poll;
1109                 dev->weight = min(rx_ring_size, 64);
1110         }
1111
1112         memset(priv, 0, sizeof(struct cpmac_priv));
1113         spin_lock_init(&priv->lock);
1114         priv->msg_enable = netif_msg_init(NETIF_MSG_WOL, 0x3fff);
1115         priv->config = pdata;
1116         priv->dev = dev;
1117         memcpy(dev->dev_addr, priv->config->dev_addr, sizeof(dev->dev_addr));
1118         if (phy_id == 31) {
1119                 snprintf(priv->phy_name, BUS_ID_SIZE, PHY_ID_FMT,
1120                          cpmac_mii.id, phy_id);
1121         } else {
1122                 snprintf(priv->phy_name, BUS_ID_SIZE, "fixed@%d:%d", 100, 1);
1123         }
1124
1125         if ((rc = register_netdev(dev))) {
1126                 printk("cpmac: error %i registering device %s\n",
1127                        rc, dev->name);
1128                 goto fail;
1129         }
1130
1131         printk("cpmac: device %s (regs: %p, irq: %d, phy: %s, mac: ",
1132                dev->name, (u32 *)dev->mem_start, dev->irq,
1133                priv->phy_name);
1134         for (i = 0; i < 6; i++) {
1135                 printk("%02x", dev->dev_addr[i]);
1136                 if (i < 5) printk(":");
1137                 else printk(")\n");
1138         }
1139
1140         return 0;
1141
1142 fail:
1143         free_netdev(dev);
1144         return rc;
1145 }
1146
1147 static int __devexit cpmac_remove(struct platform_device *pdev)
1148 {
1149         struct net_device *dev = platform_get_drvdata(pdev);
1150         unregister_netdev(dev);
1151         free_netdev(dev);
1152         return 0;
1153 }
1154
1155 static struct platform_driver cpmac_driver = {
1156         .driver.name = "cpmac",
1157         .probe = cpmac_probe,
1158         .remove = cpmac_remove,
1159 };
1160
1161 int __devinit cpmac_init(void)
1162 {
1163         volatile u32 mask;
1164         int i, res;
1165         cpmac_mii.priv = (struct cpmac_mdio_regs *)
1166                 ioremap_nocache(AR7_REGS_MDIO, sizeof(struct cpmac_mdio_regs));
1167
1168         if (!cpmac_mii.priv) {
1169                 printk("Can't ioremap mdio registers\n");
1170                 return -ENXIO;
1171         }
1172
1173 #warning FIXME: unhardcode gpio&reset bits
1174         ar7_gpio_disable(26);
1175         ar7_gpio_disable(27);
1176         ar7_device_reset(AR7_RESET_BIT_CPMAC_LO);
1177         ar7_device_reset(AR7_RESET_BIT_CPMAC_HI);
1178         ar7_device_reset(AR7_RESET_BIT_EPHY);
1179
1180         cpmac_mii.reset(&cpmac_mii);
1181
1182         for (i = 0; i < 300000; i++) {
1183                 mask = ((struct cpmac_mdio_regs *)cpmac_mii.priv)->alive;
1184                 if (mask)
1185                         break;
1186         }
1187
1188         mask &= 0x7fffffff;
1189         if (mask & (mask - 1)) {
1190                 external_switch = 1;
1191                 mask = 0;
1192         }
1193
1194         cpmac_mii.phy_mask = ~(mask | 0x80000000);
1195
1196         res = mdiobus_register(&cpmac_mii);
1197         if (res)
1198                 goto fail_mii;
1199
1200         res = platform_driver_register(&cpmac_driver);
1201         if (res)
1202                 goto fail_cpmac;
1203
1204         return 0;
1205
1206 fail_cpmac:
1207         mdiobus_unregister(&cpmac_mii);
1208
1209 fail_mii:
1210         iounmap(cpmac_mii.priv);
1211
1212         return res;
1213 }
1214
1215 void __devexit cpmac_exit(void)
1216 {
1217         platform_driver_unregister(&cpmac_driver);
1218         mdiobus_unregister(&cpmac_mii);
1219 }
1220
1221 module_init(cpmac_init);
1222 module_exit(cpmac_exit);