rpcd: iwinfo plugin fixes
[openwrt.git] / target / linux / cns3xxx / files / drivers / net / ethernet / cavium / cns3xxx_eth.c
1 /*
2  * Cavium CNS3xxx Gigabit driver for Linux
3  *
4  * Copyright 2011 Gateworks Corporation
5  *                Chris Lang <clang@gateworks.com>
6  *
7  * This program is free software; you can redistribute it and/or modify it
8  * under the terms of version 2 of the GNU General Public License
9  * as published by the Free Software Foundation.
10  *
11  */
12
13 #include <linux/delay.h>
14 #include <linux/module.h>
15 #include <linux/dma-mapping.h>
16 #include <linux/dmapool.h>
17 #include <linux/etherdevice.h>
18 #include <linux/interrupt.h>
19 #include <linux/io.h>
20 #include <linux/kernel.h>
21 #include <linux/phy.h>
22 #include <linux/platform_device.h>
23 #include <linux/platform_data/cns3xxx.h>
24 #include <linux/skbuff.h>
25
26 #define DRV_NAME "cns3xxx_eth"
27
28 #define RX_DESCS 256
29 #define TX_DESCS 128
30 #define TX_DESC_RESERVE 20
31
32 #define RX_POOL_ALLOC_SIZE (sizeof(struct rx_desc) * RX_DESCS)
33 #define TX_POOL_ALLOC_SIZE (sizeof(struct tx_desc) * TX_DESCS)
34 #define REGS_SIZE 336
35
36 #define RX_BUFFER_ALIGN 64
37 #define RX_BUFFER_ALIGN_MASK (~(RX_BUFFER_ALIGN - 1))
38
39 #define SKB_HEAD_ALIGN (((PAGE_SIZE - NET_SKB_PAD) % RX_BUFFER_ALIGN) + NET_SKB_PAD + NET_IP_ALIGN)
40 #define RX_SEGMENT_ALLOC_SIZE 2048
41 #define RX_SEGMENT_BUFSIZE (SKB_WITH_OVERHEAD(RX_SEGMENT_ALLOC_SIZE))
42 #define RX_SEGMENT_MRU (((RX_SEGMENT_BUFSIZE - SKB_HEAD_ALIGN) & RX_BUFFER_ALIGN_MASK) - NET_IP_ALIGN)
43 #define MAX_MTU 9500
44
45 #define NAPI_WEIGHT 64
46
47 /* MDIO Defines */
48 #define MDIO_CMD_COMPLETE 0x00008000
49 #define MDIO_WRITE_COMMAND 0x00002000
50 #define MDIO_READ_COMMAND 0x00004000
51 #define MDIO_REG_OFFSET 8
52 #define MDIO_VALUE_OFFSET 16
53
54 /* Descritor Defines */
55 #define END_OF_RING 0x40000000
56 #define FIRST_SEGMENT 0x20000000
57 #define LAST_SEGMENT 0x10000000
58 #define FORCE_ROUTE 0x04000000
59 #define UDP_CHECKSUM 0x00020000
60 #define TCP_CHECKSUM 0x00010000
61
62 /* Port Config Defines */
63 #define PORT_BP_ENABLE 0x00020000
64 #define PORT_DISABLE 0x00040000
65 #define PORT_LEARN_DIS 0x00080000
66 #define PORT_BLOCK_STATE 0x00100000
67 #define PORT_BLOCK_MODE 0x00200000
68
69 #define PROMISC_OFFSET 29
70
71 /* Global Config Defines */
72 #define UNKNOWN_VLAN_TO_CPU 0x02000000
73 #define ACCEPT_CRC_PACKET 0x00200000
74 #define CRC_STRIPPING 0x00100000
75
76 /* VLAN Config Defines */
77 #define NIC_MODE 0x00008000
78 #define VLAN_UNAWARE 0x00000001
79
80 /* DMA AUTO Poll Defines */
81 #define TS_POLL_EN 0x00000020
82 #define TS_SUSPEND 0x00000010
83 #define FS_POLL_EN 0x00000002
84 #define FS_SUSPEND 0x00000001
85
86 /* DMA Ring Control Defines */
87 #define QUEUE_THRESHOLD 0x000000f0
88 #define CLR_FS_STATE 0x80000000
89
90 /* Interrupt Status Defines */
91 #define MAC0_STATUS_CHANGE 0x00004000
92 #define MAC1_STATUS_CHANGE 0x00008000
93 #define MAC2_STATUS_CHANGE 0x00010000
94 #define MAC0_RX_ERROR 0x00100000
95 #define MAC1_RX_ERROR 0x00200000
96 #define MAC2_RX_ERROR 0x00400000
97
98 struct tx_desc
99 {
100         u32 sdp; /* segment data pointer */
101
102         union {
103                 struct {
104                         u32 sdl:16; /* segment data length */
105                         u32 tco:1;
106                         u32 uco:1;
107                         u32 ico:1;
108                         u32 rsv_1:3; /* reserve */
109                         u32 pri:3;
110                         u32 fp:1; /* force priority */
111                         u32 fr:1;
112                         u32 interrupt:1;
113                         u32 lsd:1;
114                         u32 fsd:1;
115                         u32 eor:1;
116                         u32 cown:1;
117                 };
118                 u32 config0;
119         };
120
121         union {
122                 struct {
123                         u32 ctv:1;
124                         u32 stv:1;
125                         u32 sid:4;
126                         u32 inss:1;
127                         u32 dels:1;
128                         u32 rsv_2:9;
129                         u32 pmap:5;
130                         u32 mark:3;
131                         u32 ewan:1;
132                         u32 fewan:1;
133                         u32 rsv_3:5;
134                 };
135                 u32 config1;
136         };
137
138         union {
139                 struct {
140                         u32 c_vid:12;
141                         u32 c_cfs:1;
142                         u32 c_pri:3;
143                         u32 s_vid:12;
144                         u32 s_dei:1;
145                         u32 s_pri:3;
146                 };
147                 u32 config2;
148         };
149
150         u8 alignment[16]; /* for 32 byte */
151 };
152
153 struct rx_desc
154 {
155         u32 sdp; /* segment data pointer */
156
157         union {
158                 struct {
159                         u32 sdl:16; /* segment data length */
160                         u32 l4f:1;
161                         u32 ipf:1;
162                         u32 prot:4;
163                         u32 hr:6;
164                         u32 lsd:1;
165                         u32 fsd:1;
166                         u32 eor:1;
167                         u32 cown:1;
168                 };
169                 u32 config0;
170         };
171
172         union {
173                 struct {
174                         u32 ctv:1;
175                         u32 stv:1;
176                         u32 unv:1;
177                         u32 iwan:1;
178                         u32 exdv:1;
179                         u32 e_wan:1;
180                         u32 rsv_1:2;
181                         u32 sp:3;
182                         u32 crc_err:1;
183                         u32 un_eth:1;
184                         u32 tc:2;
185                         u32 rsv_2:1;
186                         u32 ip_offset:5;
187                         u32 rsv_3:11;
188                 };
189                 u32 config1;
190         };
191
192         union {
193                 struct {
194                         u32 c_vid:12;
195                         u32 c_cfs:1;
196                         u32 c_pri:3;
197                         u32 s_vid:12;
198                         u32 s_dei:1;
199                         u32 s_pri:3;
200                 };
201                 u32 config2;
202         };
203
204         u8 alignment[16]; /* for 32 byte alignment */
205 };
206
207
208 struct switch_regs {
209         u32 phy_control;
210         u32 phy_auto_addr;
211         u32 mac_glob_cfg;
212         u32 mac_cfg[4];
213         u32 mac_pri_ctrl[5], __res;
214         u32 etype[2];
215         u32 udp_range[4];
216         u32 prio_etype_udp;
217         u32 prio_ipdscp[8];
218         u32 tc_ctrl;
219         u32 rate_ctrl;
220         u32 fc_glob_thrs;
221         u32 fc_port_thrs;
222         u32 mc_fc_glob_thrs;
223         u32 dc_glob_thrs;
224         u32 arl_vlan_cmd;
225         u32 arl_ctrl[3];
226         u32 vlan_cfg;
227         u32 pvid[2];
228         u32 vlan_ctrl[3];
229         u32 session_id[8];
230         u32 intr_stat;
231         u32 intr_mask;
232         u32 sram_test;
233         u32 mem_queue;
234         u32 farl_ctrl;
235         u32 fc_input_thrs, __res1[2];
236         u32 clk_skew_ctrl;
237         u32 mac_glob_cfg_ext, __res2[2];
238         u32 dma_ring_ctrl;
239         u32 dma_auto_poll_cfg;
240         u32 delay_intr_cfg, __res3;
241         u32 ts_dma_ctrl0;
242         u32 ts_desc_ptr0;
243         u32 ts_desc_base_addr0, __res4;
244         u32 fs_dma_ctrl0;
245         u32 fs_desc_ptr0;
246         u32 fs_desc_base_addr0, __res5;
247         u32 ts_dma_ctrl1;
248         u32 ts_desc_ptr1;
249         u32 ts_desc_base_addr1, __res6;
250         u32 fs_dma_ctrl1;
251         u32 fs_desc_ptr1;
252         u32 fs_desc_base_addr1;
253         u32 __res7[109];
254         u32 mac_counter0[13];
255 };
256
257 struct _tx_ring {
258         struct tx_desc *desc;
259         dma_addr_t phys_addr;
260         struct tx_desc *cur_addr;
261         struct sk_buff *buff_tab[TX_DESCS];
262         unsigned int phys_tab[TX_DESCS];
263         u32 free_index;
264         u32 count_index;
265         u32 cur_index;
266         int num_used;
267         int num_count;
268         bool stopped;
269 };
270
271 struct _rx_ring {
272         struct rx_desc *desc;
273         dma_addr_t phys_addr;
274         struct rx_desc *cur_addr;
275         void *buff_tab[RX_DESCS];
276         unsigned int phys_tab[RX_DESCS];
277         u32 cur_index;
278         u32 alloc_index;
279         int alloc_count;
280 };
281
282 struct sw {
283         struct switch_regs __iomem *regs;
284         struct napi_struct napi;
285         struct cns3xxx_plat_info *plat;
286         struct _tx_ring tx_ring;
287         struct _rx_ring rx_ring;
288         struct sk_buff *frag_first;
289         struct sk_buff *frag_last;
290         struct device *dev;
291         int rx_irq;
292         int stat_irq;
293 };
294
295 struct port {
296         struct net_device *netdev;
297         struct phy_device *phydev;
298         struct sw *sw;
299         int id;                 /* logical port ID */
300         int speed, duplex;
301 };
302
303 static spinlock_t mdio_lock;
304 static DEFINE_SPINLOCK(tx_lock);
305 static struct switch_regs __iomem *mdio_regs; /* mdio command and status only */
306 struct mii_bus *mdio_bus;
307 static int ports_open;
308 static struct port *switch_port_tab[4];
309 struct net_device *napi_dev;
310
311 static int cns3xxx_mdio_cmd(struct mii_bus *bus, int phy_id, int location,
312                            int write, u16 cmd)
313 {
314         int cycles = 0;
315         u32 temp = 0;
316
317         temp = __raw_readl(&mdio_regs->phy_control);
318         temp |= MDIO_CMD_COMPLETE;
319         __raw_writel(temp, &mdio_regs->phy_control);
320         udelay(10);
321
322         if (write) {
323                 temp = (cmd << MDIO_VALUE_OFFSET);
324                 temp |= MDIO_WRITE_COMMAND;
325         } else {
326                 temp = MDIO_READ_COMMAND;
327         }
328         temp |= ((location & 0x1f) << MDIO_REG_OFFSET);
329         temp |= (phy_id & 0x1f);
330
331         __raw_writel(temp, &mdio_regs->phy_control);
332
333         while (((__raw_readl(&mdio_regs->phy_control) & MDIO_CMD_COMPLETE) == 0)
334                         && cycles < 5000) {
335                 udelay(1);
336                 cycles++;
337         }
338
339         if (cycles == 5000) {
340                 printk(KERN_ERR "%s #%i: MII transaction failed\n", bus->name,
341                        phy_id);
342                 return -1;
343         }
344
345         temp = __raw_readl(&mdio_regs->phy_control);
346         temp |= MDIO_CMD_COMPLETE;
347         __raw_writel(temp, &mdio_regs->phy_control);
348
349         if (write)
350                 return 0;
351
352         return ((temp >> MDIO_VALUE_OFFSET) & 0xFFFF);
353 }
354
355 static int cns3xxx_mdio_read(struct mii_bus *bus, int phy_id, int location)
356 {
357         unsigned long flags;
358         int ret;
359
360         spin_lock_irqsave(&mdio_lock, flags);
361         ret = cns3xxx_mdio_cmd(bus, phy_id, location, 0, 0);
362         spin_unlock_irqrestore(&mdio_lock, flags);
363         return ret;
364 }
365
366 static int cns3xxx_mdio_write(struct mii_bus *bus, int phy_id, int location,
367                              u16 val)
368 {
369         unsigned long flags;
370         int ret;
371
372         spin_lock_irqsave(&mdio_lock, flags);
373         ret = cns3xxx_mdio_cmd(bus, phy_id, location, 1, val);
374         spin_unlock_irqrestore(&mdio_lock, flags);
375         return ret;
376 }
377
378 static int cns3xxx_mdio_register(void __iomem *base)
379 {
380         int err;
381
382         if (!(mdio_bus = mdiobus_alloc()))
383                 return -ENOMEM;
384
385         mdio_regs = base;
386
387         spin_lock_init(&mdio_lock);
388         mdio_bus->name = "CNS3xxx MII Bus";
389         mdio_bus->read = &cns3xxx_mdio_read;
390         mdio_bus->write = &cns3xxx_mdio_write;
391         strcpy(mdio_bus->id, "0");
392
393         if ((err = mdiobus_register(mdio_bus)))
394                 mdiobus_free(mdio_bus);
395         return err;
396 }
397
398 static void cns3xxx_mdio_remove(void)
399 {
400         mdiobus_unregister(mdio_bus);
401         mdiobus_free(mdio_bus);
402 }
403
404 static void enable_tx_dma(struct sw *sw)
405 {
406         __raw_writel(0x1, &sw->regs->ts_dma_ctrl0);
407 }
408
409 static void enable_rx_dma(struct sw *sw)
410 {
411         __raw_writel(0x1, &sw->regs->fs_dma_ctrl0);
412 }
413
414 static void cns3xxx_adjust_link(struct net_device *dev)
415 {
416         struct port *port = netdev_priv(dev);
417         struct phy_device *phydev = port->phydev;
418
419         if (!phydev->link) {
420                 if (port->speed) {
421                         port->speed = 0;
422                         printk(KERN_INFO "%s: link down\n", dev->name);
423                 }
424                 return;
425         }
426
427         if (port->speed == phydev->speed && port->duplex == phydev->duplex)
428                 return;
429
430         port->speed = phydev->speed;
431         port->duplex = phydev->duplex;
432
433         printk(KERN_INFO "%s: link up, speed %u Mb/s, %s duplex\n",
434                dev->name, port->speed, port->duplex ? "full" : "half");
435 }
436
437 static void eth_schedule_poll(struct sw *sw)
438 {
439         if (unlikely(!napi_schedule_prep(&sw->napi)))
440                 return;
441
442         disable_irq_nosync(sw->rx_irq);
443         __napi_schedule(&sw->napi);
444 }
445
446 irqreturn_t eth_rx_irq(int irq, void *pdev)
447 {
448         struct net_device *dev = pdev;
449         struct sw *sw = netdev_priv(dev);
450         eth_schedule_poll(sw);
451         return (IRQ_HANDLED);
452 }
453
454 irqreturn_t eth_stat_irq(int irq, void *pdev)
455 {
456         struct net_device *dev = pdev;
457         struct sw *sw = netdev_priv(dev);
458         u32 cfg;
459         u32 stat = __raw_readl(&sw->regs->intr_stat);
460         __raw_writel(0xffffffff, &sw->regs->intr_stat);
461
462         if (stat & MAC2_RX_ERROR)
463                 switch_port_tab[3]->netdev->stats.rx_dropped++;
464         if (stat & MAC1_RX_ERROR)
465                 switch_port_tab[1]->netdev->stats.rx_dropped++;
466         if (stat & MAC0_RX_ERROR)
467                 switch_port_tab[0]->netdev->stats.rx_dropped++;
468
469         if (stat & MAC0_STATUS_CHANGE) {
470                 cfg = __raw_readl(&sw->regs->mac_cfg[0]);
471                 switch_port_tab[0]->phydev->link = (cfg & 0x1);
472                 switch_port_tab[0]->phydev->duplex = ((cfg >> 4) & 0x1);
473                 if (((cfg >> 2) & 0x3) == 2)
474                         switch_port_tab[0]->phydev->speed = 1000;
475                 else if (((cfg >> 2) & 0x3) == 1)
476                         switch_port_tab[0]->phydev->speed = 100;
477                 else
478                         switch_port_tab[0]->phydev->speed = 10;
479                 cns3xxx_adjust_link(switch_port_tab[0]->netdev);
480         }
481
482         if (stat & MAC1_STATUS_CHANGE) {
483                 cfg = __raw_readl(&sw->regs->mac_cfg[1]);
484                 switch_port_tab[1]->phydev->link = (cfg & 0x1);
485                 switch_port_tab[1]->phydev->duplex = ((cfg >> 4) & 0x1);
486                 if (((cfg >> 2) & 0x3) == 2)
487                         switch_port_tab[1]->phydev->speed = 1000;
488                 else if (((cfg >> 2) & 0x3) == 1)
489                         switch_port_tab[1]->phydev->speed = 100;
490                 else
491                         switch_port_tab[1]->phydev->speed = 10;
492                 cns3xxx_adjust_link(switch_port_tab[1]->netdev);
493         }
494
495         if (stat & MAC2_STATUS_CHANGE) {
496                 cfg = __raw_readl(&sw->regs->mac_cfg[3]);
497                 switch_port_tab[3]->phydev->link = (cfg & 0x1);
498                 switch_port_tab[3]->phydev->duplex = ((cfg >> 4) & 0x1);
499                 if (((cfg >> 2) & 0x3) == 2)
500                         switch_port_tab[3]->phydev->speed = 1000;
501                 else if (((cfg >> 2) & 0x3) == 1)
502                         switch_port_tab[3]->phydev->speed = 100;
503                 else
504                         switch_port_tab[3]->phydev->speed = 10;
505                 cns3xxx_adjust_link(switch_port_tab[3]->netdev);
506         }
507
508         return (IRQ_HANDLED);
509 }
510
511
512 static void cns3xxx_alloc_rx_buf(struct sw *sw, int received)
513 {
514         struct _rx_ring *rx_ring = &sw->rx_ring;
515         unsigned int i = rx_ring->alloc_index;
516         struct rx_desc *desc = &(rx_ring)->desc[i];
517         void *buf;
518         unsigned int phys;
519
520         for (received += rx_ring->alloc_count; received > 0; received--) {
521                 buf = napi_alloc_frag(RX_SEGMENT_ALLOC_SIZE);
522                 if (!buf)
523                         break;
524
525                 phys = dma_map_single(sw->dev, buf + SKB_HEAD_ALIGN,
526                                       RX_SEGMENT_MRU, DMA_FROM_DEVICE);
527                 if (dma_mapping_error(sw->dev, phys)) {
528                         skb_free_frag(buf);
529                         break;
530                 }
531
532                 desc->sdl = RX_SEGMENT_MRU;
533                 desc->sdp = phys;
534
535                 wmb();
536
537                 /* put the new buffer on RX-free queue */
538                 rx_ring->buff_tab[i] = buf;
539                 rx_ring->phys_tab[i] = phys;
540                 if (i == RX_DESCS - 1) {
541                         i = 0;
542                         desc->config0 = END_OF_RING | FIRST_SEGMENT |
543                                         LAST_SEGMENT | RX_SEGMENT_MRU;
544                         desc = &(rx_ring)->desc[i];
545                 } else {
546                         desc->config0 = FIRST_SEGMENT | LAST_SEGMENT |
547                                         RX_SEGMENT_MRU;
548                         i++;
549                         desc++;
550                 }
551         }
552
553         rx_ring->alloc_count = received;
554         rx_ring->alloc_index = i;
555 }
556
557 static void eth_check_num_used(struct _tx_ring *tx_ring)
558 {
559         bool stop = false;
560         int i;
561
562         if (tx_ring->num_used >= TX_DESCS - TX_DESC_RESERVE)
563                 stop = true;
564
565         if (tx_ring->stopped == stop)
566                 return;
567
568         tx_ring->stopped = stop;
569         for (i = 0; i < 4; i++) {
570                 struct port *port = switch_port_tab[i];
571                 struct net_device *dev;
572
573                 if (!port)
574                         continue;
575
576                 dev = port->netdev;
577                 if (stop)
578                         netif_stop_queue(dev);
579                 else
580                         netif_wake_queue(dev);
581         }
582 }
583
584 static void eth_complete_tx(struct sw *sw)
585 {
586         struct _tx_ring *tx_ring = &sw->tx_ring;
587         struct tx_desc *desc;
588         int i;
589         int index;
590         int num_used = tx_ring->num_used;
591         struct sk_buff *skb;
592
593         index = tx_ring->free_index;
594         desc = &(tx_ring)->desc[index];
595         for (i = 0; i < num_used; i++) {
596                 if (desc->cown) {
597                         skb = tx_ring->buff_tab[index];
598                         tx_ring->buff_tab[index] = 0;
599                         if (skb)
600                                 dev_kfree_skb_any(skb);
601                         dma_unmap_single(sw->dev, tx_ring->phys_tab[index],
602                                 desc->sdl, DMA_TO_DEVICE);
603                         if (++index == TX_DESCS) {
604                                 index = 0;
605                                 desc = &(tx_ring)->desc[index];
606                         } else {
607                                 desc++;
608                         }
609                 } else {
610                         break;
611                 }
612         }
613         tx_ring->free_index = index;
614         tx_ring->num_used -= i;
615         eth_check_num_used(tx_ring);
616 }
617
618 static int eth_poll(struct napi_struct *napi, int budget)
619 {
620         struct sw *sw = container_of(napi, struct sw, napi);
621         struct _rx_ring *rx_ring = &sw->rx_ring;
622         int received = 0;
623         unsigned int length;
624         unsigned int i = rx_ring->cur_index;
625         struct rx_desc *desc = &(rx_ring)->desc[i];
626         unsigned int alloc_count = rx_ring->alloc_count;
627
628         while (desc->cown && alloc_count + received < RX_DESCS - 1) {
629                 struct sk_buff *skb;
630                 int reserve = SKB_HEAD_ALIGN;
631
632                 if (received >= budget)
633                         break;
634
635                 /* process received frame */
636                 dma_unmap_single(sw->dev, rx_ring->phys_tab[i],
637                                  RX_SEGMENT_MRU, DMA_FROM_DEVICE);
638
639                 skb = build_skb(rx_ring->buff_tab[i], RX_SEGMENT_ALLOC_SIZE);
640                 if (!skb)
641                         break;
642
643                 skb->dev = switch_port_tab[desc->sp]->netdev;
644
645                 length = desc->sdl;
646                 if (desc->fsd && !desc->lsd)
647                         length = RX_SEGMENT_MRU;
648
649                 if (!desc->fsd) {
650                         reserve -= NET_IP_ALIGN;
651                         if (!desc->lsd)
652                                 length += NET_IP_ALIGN;
653                 }
654
655                 skb_reserve(skb, reserve);
656                 skb_put(skb, length);
657
658                 if (!sw->frag_first)
659                         sw->frag_first = skb;
660                 else {
661                         if (sw->frag_first == sw->frag_last)
662                                 skb_shinfo(sw->frag_first)->frag_list = skb;
663                         else
664                                 sw->frag_last->next = skb;
665                         sw->frag_first->len += skb->len;
666                         sw->frag_first->data_len += skb->len;
667                         sw->frag_first->truesize += skb->truesize;
668                 }
669                 sw->frag_last = skb;
670
671                 if (desc->lsd) {
672                         struct net_device *dev;
673
674                         skb = sw->frag_first;
675                         dev = skb->dev;
676                         skb->protocol = eth_type_trans(skb, dev);
677
678                         dev->stats.rx_packets++;
679                         dev->stats.rx_bytes += skb->len;
680
681                         /* RX Hardware checksum offload */
682                         skb->ip_summed = CHECKSUM_NONE;
683                         switch (desc->prot) {
684                                 case 1:
685                                 case 2:
686                                 case 5:
687                                 case 6:
688                                 case 13:
689                                 case 14:
690                                         if (!desc->l4f) {
691                                                 skb->ip_summed = CHECKSUM_UNNECESSARY;
692                                                 napi_gro_receive(napi, skb);
693                                                 break;
694                                         }
695                                         /* fall through */
696                                 default:
697                                         netif_receive_skb(skb);
698                                         break;
699                         }
700
701                         sw->frag_first = NULL;
702                         sw->frag_last = NULL;
703                 }
704
705                 received++;
706                 if (++i == RX_DESCS) {
707                         i = 0;
708                         desc = &(rx_ring)->desc[i];
709                 } else {
710                         desc++;
711                 }
712         }
713
714         rx_ring->cur_index = i;
715         if (!received) {
716                 napi_complete(napi);
717                 enable_irq(sw->rx_irq);
718                 budget = 0;
719
720                 /* if rx descriptors are full schedule another poll */
721                 if (rx_ring->desc[(i-1) & (RX_DESCS-1)].cown)
722                         eth_schedule_poll(sw);
723         }
724
725         spin_lock_bh(&tx_lock);
726         eth_complete_tx(sw);
727         spin_unlock_bh(&tx_lock);
728
729         cns3xxx_alloc_rx_buf(sw, received);
730
731         wmb();
732         enable_rx_dma(sw);
733
734         return budget;
735 }
736
737 static void eth_set_desc(struct sw *sw, struct _tx_ring *tx_ring, int index,
738                          int index_last, void *data, int len, u32 config0,
739                          u32 pmap)
740 {
741         struct tx_desc *tx_desc = &(tx_ring)->desc[index];
742         unsigned int phys;
743
744         phys = dma_map_single(sw->dev, data, len, DMA_TO_DEVICE);
745         tx_desc->sdp = phys;
746         tx_desc->pmap = pmap;
747         tx_ring->phys_tab[index] = phys;
748
749         config0 |= len;
750         if (index == TX_DESCS - 1)
751                 config0 |= END_OF_RING;
752         if (index == index_last)
753                 config0 |= LAST_SEGMENT;
754
755         wmb();
756         tx_desc->config0 = config0;
757 }
758
759 static int eth_xmit(struct sk_buff *skb, struct net_device *dev)
760 {
761         struct port *port = netdev_priv(dev);
762         struct sw *sw = port->sw;
763         struct _tx_ring *tx_ring = &sw->tx_ring;
764         struct sk_buff *skb1;
765         char pmap = (1 << port->id);
766         int nr_frags = skb_shinfo(skb)->nr_frags;
767         int nr_desc = nr_frags;
768         int index0, index, index_last;
769         int len0;
770         unsigned int i;
771         u32 config0;
772
773         if (pmap == 8)
774                 pmap = (1 << 4);
775
776         skb_walk_frags(skb, skb1)
777                 nr_desc++;
778
779         eth_schedule_poll(sw);
780         spin_lock_bh(&tx_lock);
781         if ((tx_ring->num_used + nr_desc + 1) >= TX_DESCS) {
782                 spin_unlock_bh(&tx_lock);
783                 return NETDEV_TX_BUSY;
784         }
785
786         index = index0 = tx_ring->cur_index;
787         index_last = (index0 + nr_desc) % TX_DESCS;
788         tx_ring->cur_index = (index_last + 1) % TX_DESCS;
789
790         spin_unlock_bh(&tx_lock);
791
792         config0 = FORCE_ROUTE;
793         if (skb->ip_summed == CHECKSUM_PARTIAL)
794                 config0 |= UDP_CHECKSUM | TCP_CHECKSUM;
795
796         len0 = skb->len;
797
798         /* fragments */
799         for (i = 0; i < nr_frags; i++) {
800                 struct skb_frag_struct *frag;
801                 void *addr;
802
803                 index = (index + 1) % TX_DESCS;
804
805                 frag = &skb_shinfo(skb)->frags[i];
806                 addr = page_address(skb_frag_page(frag)) + frag->page_offset;
807
808                 eth_set_desc(sw, tx_ring, index, index_last, addr, frag->size,
809                              config0, pmap);
810         }
811
812         if (nr_frags)
813                 len0 = skb->len - skb->data_len;
814
815         skb_walk_frags(skb, skb1) {
816                 index = (index + 1) % TX_DESCS;
817                 len0 -= skb1->len;
818
819                 eth_set_desc(sw, tx_ring, index, index_last, skb1->data,
820                              skb1->len, config0, pmap);
821         }
822
823         tx_ring->buff_tab[index0] = skb;
824         eth_set_desc(sw, tx_ring, index0, index_last, skb->data, len0,
825                      config0 | FIRST_SEGMENT, pmap);
826
827         wmb();
828
829         spin_lock(&tx_lock);
830         tx_ring->num_used += nr_desc + 1;
831         spin_unlock(&tx_lock);
832
833         dev->stats.tx_packets++;
834         dev->stats.tx_bytes += skb->len;
835
836         enable_tx_dma(sw);
837
838         return NETDEV_TX_OK;
839 }
840
841 static int eth_ioctl(struct net_device *dev, struct ifreq *req, int cmd)
842 {
843         struct port *port = netdev_priv(dev);
844
845         if (!netif_running(dev))
846                 return -EINVAL;
847         return phy_mii_ioctl(port->phydev, req, cmd);
848 }
849
850 /* ethtool support */
851
852 static void cns3xxx_get_drvinfo(struct net_device *dev,
853                                struct ethtool_drvinfo *info)
854 {
855         strcpy(info->driver, DRV_NAME);
856         strcpy(info->bus_info, "internal");
857 }
858
859 static int cns3xxx_get_settings(struct net_device *dev, struct ethtool_cmd *cmd)
860 {
861         struct port *port = netdev_priv(dev);
862         return phy_ethtool_gset(port->phydev, cmd);
863 }
864
865 static int cns3xxx_set_settings(struct net_device *dev, struct ethtool_cmd *cmd)
866 {
867         struct port *port = netdev_priv(dev);
868         return phy_ethtool_sset(port->phydev, cmd);
869 }
870
871 static int cns3xxx_nway_reset(struct net_device *dev)
872 {
873         struct port *port = netdev_priv(dev);
874         return phy_start_aneg(port->phydev);
875 }
876
877 static struct ethtool_ops cns3xxx_ethtool_ops = {
878         .get_drvinfo = cns3xxx_get_drvinfo,
879         .get_settings = cns3xxx_get_settings,
880         .set_settings = cns3xxx_set_settings,
881         .nway_reset = cns3xxx_nway_reset,
882         .get_link = ethtool_op_get_link,
883 };
884
885
886 static int init_rings(struct sw *sw)
887 {
888         int i;
889         struct _rx_ring *rx_ring = &sw->rx_ring;
890         struct _tx_ring *tx_ring = &sw->tx_ring;
891
892         __raw_writel(0, &sw->regs->fs_dma_ctrl0);
893         __raw_writel(TS_SUSPEND | FS_SUSPEND, &sw->regs->dma_auto_poll_cfg);
894         __raw_writel(QUEUE_THRESHOLD, &sw->regs->dma_ring_ctrl);
895         __raw_writel(CLR_FS_STATE | QUEUE_THRESHOLD, &sw->regs->dma_ring_ctrl);
896
897         __raw_writel(QUEUE_THRESHOLD, &sw->regs->dma_ring_ctrl);
898
899         rx_ring->desc = dmam_alloc_coherent(sw->dev, RX_POOL_ALLOC_SIZE,
900                                             &rx_ring->phys_addr, GFP_KERNEL);
901         if (!rx_ring->desc)
902                 return -ENOMEM;
903
904         /* Setup RX buffers */
905         memset(rx_ring->desc, 0, RX_POOL_ALLOC_SIZE);
906         for (i = 0; i < RX_DESCS; i++) {
907                 struct rx_desc *desc = &(rx_ring)->desc[i];
908                 void *buf;
909
910                 buf = netdev_alloc_frag(RX_SEGMENT_ALLOC_SIZE);
911                 if (!buf)
912                         return -ENOMEM;
913
914                 desc->sdl = RX_SEGMENT_MRU;
915                 if (i == (RX_DESCS - 1))
916                         desc->eor = 1;
917                 desc->fsd = 1;
918                 desc->lsd = 1;
919
920                 desc->sdp = dma_map_single(sw->dev, buf + SKB_HEAD_ALIGN,
921                                            RX_SEGMENT_MRU, DMA_FROM_DEVICE);
922                 if (dma_mapping_error(sw->dev, desc->sdp))
923                         return -EIO;
924
925                 rx_ring->buff_tab[i] = buf;
926                 rx_ring->phys_tab[i] = desc->sdp;
927                 desc->cown = 0;
928         }
929         __raw_writel(rx_ring->phys_addr, &sw->regs->fs_desc_ptr0);
930         __raw_writel(rx_ring->phys_addr, &sw->regs->fs_desc_base_addr0);
931
932         tx_ring->desc = dmam_alloc_coherent(sw->dev, TX_POOL_ALLOC_SIZE,
933                                             &tx_ring->phys_addr, GFP_KERNEL);
934         if (!tx_ring->desc)
935                 return -ENOMEM;
936
937         /* Setup TX buffers */
938         memset(tx_ring->desc, 0, TX_POOL_ALLOC_SIZE);
939         for (i = 0; i < TX_DESCS; i++) {
940                 struct tx_desc *desc = &(tx_ring)->desc[i];
941                 tx_ring->buff_tab[i] = 0;
942
943                 if (i == (TX_DESCS - 1))
944                         desc->eor = 1;
945                 desc->cown = 1;
946         }
947         __raw_writel(tx_ring->phys_addr, &sw->regs->ts_desc_ptr0);
948         __raw_writel(tx_ring->phys_addr, &sw->regs->ts_desc_base_addr0);
949
950         return 0;
951 }
952
953 static void destroy_rings(struct sw *sw)
954 {
955         int i;
956
957         for (i = 0; i < RX_DESCS; i++) {
958                 struct _rx_ring *rx_ring = &sw->rx_ring;
959                 struct rx_desc *desc = &(rx_ring)->desc[i];
960                 void *buf = sw->rx_ring.buff_tab[i];
961
962                 if (!buf)
963                         continue;
964
965                 dma_unmap_single(sw->dev, desc->sdp, RX_SEGMENT_MRU,
966                                  DMA_FROM_DEVICE);
967                 skb_free_frag(buf);
968         }
969
970         for (i = 0; i < TX_DESCS; i++) {
971                 struct _tx_ring *tx_ring = &sw->tx_ring;
972                 struct tx_desc *desc = &(tx_ring)->desc[i];
973                 struct sk_buff *skb = sw->tx_ring.buff_tab[i];
974
975                 if (!skb)
976                         continue;
977
978                 dma_unmap_single(sw->dev, desc->sdp, skb->len, DMA_TO_DEVICE);
979                 dev_kfree_skb(skb);
980         }
981 }
982
983 static int eth_open(struct net_device *dev)
984 {
985         struct port *port = netdev_priv(dev);
986         struct sw *sw = port->sw;
987         u32 temp;
988
989         port->speed = 0;        /* force "link up" message */
990         phy_start(port->phydev);
991
992         netif_start_queue(dev);
993
994         if (!ports_open) {
995                 request_irq(sw->rx_irq, eth_rx_irq, IRQF_SHARED, "gig_switch", napi_dev);
996                 request_irq(sw->stat_irq, eth_stat_irq, IRQF_SHARED, "gig_stat", napi_dev);
997                 napi_enable(&sw->napi);
998                 netif_start_queue(napi_dev);
999
1000                 __raw_writel(~(MAC0_STATUS_CHANGE | MAC1_STATUS_CHANGE | MAC2_STATUS_CHANGE |
1001                                MAC0_RX_ERROR | MAC1_RX_ERROR | MAC2_RX_ERROR), &sw->regs->intr_mask);
1002
1003                 temp = __raw_readl(&sw->regs->mac_cfg[2]);
1004                 temp &= ~(PORT_DISABLE);
1005                 __raw_writel(temp, &sw->regs->mac_cfg[2]);
1006
1007                 temp = __raw_readl(&sw->regs->dma_auto_poll_cfg);
1008                 temp &= ~(TS_SUSPEND | FS_SUSPEND);
1009                 __raw_writel(temp, &sw->regs->dma_auto_poll_cfg);
1010
1011                 enable_rx_dma(sw);
1012         }
1013         temp = __raw_readl(&sw->regs->mac_cfg[port->id]);
1014         temp &= ~(PORT_DISABLE);
1015         __raw_writel(temp, &sw->regs->mac_cfg[port->id]);
1016
1017         ports_open++;
1018         netif_carrier_on(dev);
1019
1020         return 0;
1021 }
1022
1023 static int eth_close(struct net_device *dev)
1024 {
1025         struct port *port = netdev_priv(dev);
1026         struct sw *sw = port->sw;
1027         u32 temp;
1028
1029         ports_open--;
1030
1031         temp = __raw_readl(&sw->regs->mac_cfg[port->id]);
1032         temp |= (PORT_DISABLE);
1033         __raw_writel(temp, &sw->regs->mac_cfg[port->id]);
1034
1035         netif_stop_queue(dev);
1036
1037         phy_stop(port->phydev);
1038
1039         if (!ports_open) {
1040                 disable_irq(sw->rx_irq);
1041                 free_irq(sw->rx_irq, napi_dev);
1042                 disable_irq(sw->stat_irq);
1043                 free_irq(sw->stat_irq, napi_dev);
1044                 napi_disable(&sw->napi);
1045                 netif_stop_queue(napi_dev);
1046                 temp = __raw_readl(&sw->regs->mac_cfg[2]);
1047                 temp |= (PORT_DISABLE);
1048                 __raw_writel(temp, &sw->regs->mac_cfg[2]);
1049
1050                 __raw_writel(TS_SUSPEND | FS_SUSPEND,
1051                              &sw->regs->dma_auto_poll_cfg);
1052         }
1053
1054         netif_carrier_off(dev);
1055         return 0;
1056 }
1057
1058 static void eth_rx_mode(struct net_device *dev)
1059 {
1060         struct port *port = netdev_priv(dev);
1061         struct sw *sw = port->sw;
1062         u32 temp;
1063
1064         temp = __raw_readl(&sw->regs->mac_glob_cfg);
1065
1066         if (dev->flags & IFF_PROMISC) {
1067                 if (port->id == 3)
1068                         temp |= ((1 << 2) << PROMISC_OFFSET);
1069                 else
1070                         temp |= ((1 << port->id) << PROMISC_OFFSET);
1071         } else {
1072                 if (port->id == 3)
1073                         temp &= ~((1 << 2) << PROMISC_OFFSET);
1074                 else
1075                         temp &= ~((1 << port->id) << PROMISC_OFFSET);
1076         }
1077         __raw_writel(temp, &sw->regs->mac_glob_cfg);
1078 }
1079
1080 static int eth_set_mac(struct net_device *netdev, void *p)
1081 {
1082         struct port *port = netdev_priv(netdev);
1083         struct sw *sw = port->sw;
1084         struct sockaddr *addr = p;
1085         u32 cycles = 0;
1086
1087         if (!is_valid_ether_addr(addr->sa_data))
1088                 return -EADDRNOTAVAIL;
1089
1090         /* Invalidate old ARL Entry */
1091         if (port->id == 3)
1092                 __raw_writel((port->id << 16) | (0x4 << 9), &sw->regs->arl_ctrl[0]);
1093         else
1094                 __raw_writel(((port->id + 1) << 16) | (0x4 << 9), &sw->regs->arl_ctrl[0]);
1095         __raw_writel( ((netdev->dev_addr[0] << 24) | (netdev->dev_addr[1] << 16) |
1096                         (netdev->dev_addr[2] << 8) | (netdev->dev_addr[3])),
1097                         &sw->regs->arl_ctrl[1]);
1098
1099         __raw_writel( ((netdev->dev_addr[4] << 24) | (netdev->dev_addr[5] << 16) |
1100                         (1 << 1)),
1101                         &sw->regs->arl_ctrl[2]);
1102         __raw_writel((1 << 19), &sw->regs->arl_vlan_cmd);
1103
1104         while (((__raw_readl(&sw->regs->arl_vlan_cmd) & (1 << 21)) == 0)
1105                         && cycles < 5000) {
1106                 udelay(1);
1107                 cycles++;
1108         }
1109
1110         cycles = 0;
1111         memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
1112
1113         if (port->id == 3)
1114                 __raw_writel((port->id << 16) | (0x4 << 9), &sw->regs->arl_ctrl[0]);
1115         else
1116                 __raw_writel(((port->id + 1) << 16) | (0x4 << 9), &sw->regs->arl_ctrl[0]);
1117         __raw_writel( ((addr->sa_data[0] << 24) | (addr->sa_data[1] << 16) |
1118                         (addr->sa_data[2] << 8) | (addr->sa_data[3])),
1119                         &sw->regs->arl_ctrl[1]);
1120
1121         __raw_writel( ((addr->sa_data[4] << 24) | (addr->sa_data[5] << 16) |
1122                         (7 << 4) | (1 << 1)), &sw->regs->arl_ctrl[2]);
1123         __raw_writel((1 << 19), &sw->regs->arl_vlan_cmd);
1124
1125         while (((__raw_readl(&sw->regs->arl_vlan_cmd) & (1 << 21)) == 0)
1126                 && cycles < 5000) {
1127                 udelay(1);
1128                 cycles++;
1129         }
1130         return 0;
1131 }
1132
1133 static int cns3xxx_change_mtu(struct net_device *dev, int new_mtu)
1134 {
1135         if (new_mtu > MAX_MTU)
1136                 return -EINVAL;
1137
1138         dev->mtu = new_mtu;
1139         return 0;
1140 }
1141
1142 static const struct net_device_ops cns3xxx_netdev_ops = {
1143         .ndo_open = eth_open,
1144         .ndo_stop = eth_close,
1145         .ndo_start_xmit = eth_xmit,
1146         .ndo_set_rx_mode = eth_rx_mode,
1147         .ndo_do_ioctl = eth_ioctl,
1148         .ndo_change_mtu = cns3xxx_change_mtu,
1149         .ndo_set_mac_address = eth_set_mac,
1150         .ndo_validate_addr = eth_validate_addr,
1151 };
1152
1153 static int eth_init_one(struct platform_device *pdev)
1154 {
1155         int i;
1156         struct port *port;
1157         struct sw *sw;
1158         struct net_device *dev;
1159         struct cns3xxx_plat_info *plat = pdev->dev.platform_data;
1160         char phy_id[MII_BUS_ID_SIZE + 3];
1161         int err;
1162         u32 temp;
1163         struct resource *res;
1164         void __iomem *regs;
1165
1166         res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1167         regs = devm_ioremap_resource(&pdev->dev, res);
1168         if (IS_ERR(regs))
1169                 return PTR_ERR(regs);
1170
1171         err = cns3xxx_mdio_register(regs);
1172         if (err)
1173                 return err;
1174
1175         if (!(napi_dev = alloc_etherdev(sizeof(struct sw)))) {
1176                 err = -ENOMEM;
1177                 goto err_remove_mdio;
1178         }
1179
1180         strcpy(napi_dev->name, "switch%d");
1181         napi_dev->features = NETIF_F_IP_CSUM | NETIF_F_SG | NETIF_F_FRAGLIST;
1182
1183         SET_NETDEV_DEV(napi_dev, &pdev->dev);
1184         sw = netdev_priv(napi_dev);
1185         memset(sw, 0, sizeof(struct sw));
1186         sw->regs = regs;
1187         sw->dev = &pdev->dev;
1188
1189         sw->rx_irq = platform_get_irq_byname(pdev, "eth_rx");
1190         sw->stat_irq = platform_get_irq_byname(pdev, "eth_stat");
1191
1192         temp = __raw_readl(&sw->regs->phy_auto_addr);
1193         temp |= (3 << 30); /* maximum frame length: 9600 bytes */
1194         __raw_writel(temp, &sw->regs->phy_auto_addr);
1195
1196         for (i = 0; i < 4; i++) {
1197                 temp = __raw_readl(&sw->regs->mac_cfg[i]);
1198                 temp |= (PORT_DISABLE);
1199                 __raw_writel(temp, &sw->regs->mac_cfg[i]);
1200         }
1201
1202         temp = PORT_DISABLE;
1203         __raw_writel(temp, &sw->regs->mac_cfg[2]);
1204
1205         temp = __raw_readl(&sw->regs->vlan_cfg);
1206         temp |= NIC_MODE | VLAN_UNAWARE;
1207         __raw_writel(temp, &sw->regs->vlan_cfg);
1208
1209         __raw_writel(UNKNOWN_VLAN_TO_CPU |
1210                      CRC_STRIPPING, &sw->regs->mac_glob_cfg);
1211
1212         if ((err = init_rings(sw)) != 0) {
1213                 err = -ENOMEM;
1214                 goto err_free;
1215         }
1216         platform_set_drvdata(pdev, napi_dev);
1217
1218         netif_napi_add(napi_dev, &sw->napi, eth_poll, NAPI_WEIGHT);
1219
1220         for (i = 0; i < 3; i++) {
1221                 if (!(plat->ports & (1 << i))) {
1222                         continue;
1223                 }
1224
1225                 if (!(dev = alloc_etherdev(sizeof(struct port)))) {
1226                         goto free_ports;
1227                 }
1228
1229                 port = netdev_priv(dev);
1230                 port->netdev = dev;
1231                 if (i == 2)
1232                         port->id = 3;
1233                 else
1234                         port->id = i;
1235                 port->sw = sw;
1236
1237                 temp = __raw_readl(&sw->regs->mac_cfg[port->id]);
1238                 temp |= (PORT_DISABLE | PORT_BLOCK_STATE | PORT_LEARN_DIS);
1239                 __raw_writel(temp, &sw->regs->mac_cfg[port->id]);
1240
1241                 SET_NETDEV_DEV(dev, &pdev->dev);
1242                 dev->netdev_ops = &cns3xxx_netdev_ops;
1243                 dev->ethtool_ops = &cns3xxx_ethtool_ops;
1244                 dev->tx_queue_len = 1000;
1245                 dev->features = NETIF_F_IP_CSUM | NETIF_F_SG | NETIF_F_FRAGLIST;
1246
1247                 switch_port_tab[port->id] = port;
1248                 memcpy(dev->dev_addr, &plat->hwaddr[i], ETH_ALEN);
1249
1250                 snprintf(phy_id, MII_BUS_ID_SIZE + 3, PHY_ID_FMT, "0", plat->phy[i]);
1251                 port->phydev = phy_connect(dev, phy_id, &cns3xxx_adjust_link,
1252                         PHY_INTERFACE_MODE_RGMII);
1253                 if ((err = IS_ERR(port->phydev))) {
1254                         switch_port_tab[port->id] = 0;
1255                         free_netdev(dev);
1256                         goto free_ports;
1257                 }
1258
1259                 port->phydev->irq = PHY_IGNORE_INTERRUPT;
1260
1261                 if ((err = register_netdev(dev))) {
1262                         phy_disconnect(port->phydev);
1263                         switch_port_tab[port->id] = 0;
1264                         free_netdev(dev);
1265                         goto free_ports;
1266                 }
1267
1268                 printk(KERN_INFO "%s: RGMII PHY %i on cns3xxx Switch\n", dev->name, plat->phy[i]);
1269                 netif_carrier_off(dev);
1270                 dev = 0;
1271         }
1272
1273         return 0;
1274
1275 free_ports:
1276         err = -ENOMEM;
1277         for (--i; i >= 0; i--) {
1278                 if (switch_port_tab[i]) {
1279                         port = switch_port_tab[i];
1280                         dev = port->netdev;
1281                         unregister_netdev(dev);
1282                         phy_disconnect(port->phydev);
1283                         switch_port_tab[i] = 0;
1284                         free_netdev(dev);
1285                 }
1286         }
1287 err_free:
1288         free_netdev(napi_dev);
1289 err_remove_mdio:
1290         cns3xxx_mdio_remove();
1291         return err;
1292 }
1293
1294 static int eth_remove_one(struct platform_device *pdev)
1295 {
1296         struct net_device *dev = platform_get_drvdata(pdev);
1297         struct sw *sw = netdev_priv(dev);
1298         int i;
1299
1300         destroy_rings(sw);
1301         for (i = 3; i >= 0; i--) {
1302                 if (switch_port_tab[i]) {
1303                         struct port *port = switch_port_tab[i];
1304                         struct net_device *dev = port->netdev;
1305                         unregister_netdev(dev);
1306                         phy_disconnect(port->phydev);
1307                         switch_port_tab[i] = 0;
1308                         free_netdev(dev);
1309                 }
1310         }
1311
1312         free_netdev(napi_dev);
1313         cns3xxx_mdio_remove();
1314
1315         return 0;
1316 }
1317
1318 static struct platform_driver cns3xxx_eth_driver = {
1319         .driver.name    = DRV_NAME,
1320         .probe          = eth_init_one,
1321         .remove         = eth_remove_one,
1322 };
1323
1324 static int __init eth_init_module(void)
1325 {
1326         return platform_driver_register(&cns3xxx_eth_driver);
1327 }
1328
1329 static void __exit eth_cleanup_module(void)
1330 {
1331         platform_driver_unregister(&cns3xxx_eth_driver);
1332 }
1333
1334 module_init(eth_init_module);
1335 module_exit(eth_cleanup_module);
1336
1337 MODULE_AUTHOR("Chris Lang");
1338 MODULE_DESCRIPTION("Cavium CNS3xxx Ethernet driver");
1339 MODULE_LICENSE("GPL v2");
1340 MODULE_ALIAS("platform:cns3xxx_eth");