firmware-utils: move bcm_tag.h here
[openwrt.git] / package / libnl-tiny / src / attr.c
1 /*
2  * lib/attr.c           Netlink Attributes
3  *
4  *      This library is free software; you can redistribute it and/or
5  *      modify it under the terms of the GNU Lesser General Public
6  *      License as published by the Free Software Foundation version 2.1
7  *      of the License.
8  *
9  * Copyright (c) 2003-2008 Thomas Graf <tgraf@suug.ch>
10  */
11
12 #include <netlink-local.h>
13 #include <netlink/netlink.h>
14 #include <netlink/utils.h>
15 #include <netlink/addr.h>
16 #include <netlink/attr.h>
17 #include <netlink/msg.h>
18 #include <linux/socket.h>
19
20 /**
21  * @ingroup msg
22  * @defgroup attr Attributes
23  * Netlink Attributes Construction/Parsing Interface
24  *
25  * \section attr_sec Netlink Attributes
26  * Netlink attributes allow for data chunks of arbitary length to be
27  * attached to a netlink message. Each attribute is encoded with a
28  * type and length field, both 16 bits, stored in the attribute header
29  * preceding the attribute data. The main advantage of using attributes
30  * over packing everything into the family header is that the interface
31  * stays extendable as new attributes can supersede old attributes while
32  * remaining backwards compatible. Also attributes can be defined optional
33  * thus avoiding the transmission of unnecessary empty data blocks.
34  * Special nested attributes allow for more complex data structures to
35  * be transmitted, e.g. trees, lists, etc.
36  *
37  * While not required, netlink attributes typically follow the family
38  * header of a netlink message and must be properly aligned to NLA_ALIGNTO:
39  * @code
40  *   +----------------+- - -+---------------+- - -+------------+- - -+
41  *   | Netlink Header | Pad | Family Header | Pad | Attributes | Pad |
42  *   +----------------+- - -+---------------+- - -+------------+- - -+
43  * @endcode
44  *
45  * The actual attributes are chained together each separately aligned to
46  * NLA_ALIGNTO. The position of an attribute is defined based on the
47  * length field of the preceding attributes:
48  * @code
49  *   +-------------+- - -+-------------+- - -+------
50  *   | Attribute 1 | Pad | Attribute 2 | Pad | ...
51  *   +-------------+- - -+-------------+- - -+------
52  *   nla_next(attr1)------^
53  * @endcode
54  *
55  * The attribute itself consists of the attribute header followed by
56  * the actual payload also aligned to NLA_ALIGNTO. The function nla_data()
57  * returns a pointer to the start of the payload while nla_len() returns
58  * the length of the payload in bytes.
59  *
60  * \b Note: Be aware, NLA_ALIGNTO equals to 4 bytes, therefore it is not
61  * safe to dereference any 64 bit data types directly.
62  *
63  * @code
64  *    <----------- nla_total_size(payload) ----------->
65  *    <-------- nla_attr_size(payload) --------->
66  *   +------------------+- - -+- - - - - - - - - +- - -+
67  *   | Attribute Header | Pad |     Payload      | Pad |
68  *   +------------------+- - -+- - - - - - - - - +- - -+
69  *   nla_data(nla)-------------^
70  *                             <- nla_len(nla) ->
71  * @endcode
72  *
73  * @subsection attr_datatypes Attribute Data Types
74  * A number of basic data types are supported to simplify access and
75  * validation of netlink attributes. This data type information is
76  * not encoded in the attribute, both the kernel and userspace part
77  * are required to share this information on their own.
78  *
79  * One of the major advantages of these basic types is the automatic
80  * validation of each attribute based on an attribute policy. The
81  * validation covers most of the checks required to safely use
82  * attributes and thus keeps the individual sanity check to a minimum.
83  *
84  * Never access attribute payload without ensuring basic validation
85  * first, attributes may:
86  * - not be present even though required
87  * - contain less actual payload than expected
88  * - fake a attribute length which exceeds the end of the message
89  * - contain unterminated character strings
90  *
91  * Policies are defined as array of the struct nla_policy. The array is
92  * indexed with the attribute type, therefore the array must be sized
93  * accordingly.
94  * @code
95  * static struct nla_policy my_policy[ATTR_MAX+1] = {
96  *      [ATTR_FOO] = { .type = ..., .minlen = ..., .maxlen = ... },
97  * };
98  *
99  * err = nla_validate(attrs, attrlen, ATTR_MAX, &my_policy);
100  * @endcode
101  *
102  * Some basic validations are performed on every attribute, regardless of type.
103  * - If the attribute type exceeds the maximum attribute type specified or
104  *   the attribute type is lesser-or-equal than zero, the attribute will
105  *   be silently ignored.
106  * - If the payload length falls below the \a minlen value the attribute
107  *   will be rejected.
108  * - If \a maxlen is non-zero and the payload length exceeds the \a maxlen
109  *   value the attribute will be rejected.
110  *
111  *
112  * @par Unspecific Attribute (NLA_UNSPEC)
113  * This is the standard type if no type is specified. It is used for
114  * binary data of arbitary length. Typically this attribute carries
115  * a binary structure or a stream of bytes.
116  * @par
117  * @code
118  * // In this example, we will assume a binary structure requires to
119  * // be transmitted. The definition of the structure will typically
120  * // go into a header file available to both the kernel and userspace
121  * // side.
122  * //
123  * // Note: Be careful when putting 64 bit data types into a structure.
124  * // The attribute payload is only aligned to 4 bytes, dereferencing
125  * // the member may fail.
126  * struct my_struct {
127  *     int a;
128  *     int b;
129  * };
130  *
131  * // The validation function will not enforce an exact length match to
132  * // allow structures to grow as required. Note: While it is allowed
133  * // to add members to the end of the structure, changing the order or
134  * // inserting members in the middle of the structure will break your
135  * // binary interface.
136  * static struct nla_policy my_policy[ATTR_MAX+1] = {
137  *     [ATTR_MY_STRICT] = { .type = NLA_UNSPEC,
138  *                          .minlen = sizeof(struct my_struct) },
139  *
140  * // The binary structure is appened to the message using nla_put()
141  * struct my_struct foo = { .a = 1, .b = 2 };
142  * nla_put(msg, ATTR_MY_STRUCT, sizeof(foo), &foo);
143  *
144  * // On the receiving side, a pointer to the structure pointing inside
145  * // the message payload is returned by nla_get().
146  * if (attrs[ATTR_MY_STRUCT])
147  *     struct my_struct *foo = nla_get(attrs[ATTR_MY_STRUCT]);
148  * @endcode
149  *
150  * @par Integers (NLA_U8, NLA_U16, NLA_U32, NLA_U64)
151  * Integers come in different sizes from 8 bit to 64 bit. However, since the
152  * payload length is aligned to 4 bytes, integers smaller than 32 bit are
153  * only useful to enforce the maximum range of values.
154  * @par
155  * \b Note: There is no difference made between signed and unsigned integers.
156  * The validation only enforces the minimal payload length required to store
157  * an integer of specified type.
158  * @par
159  * @code
160  * // Even though possible, it does not make sense to specify .minlen or
161  * // .maxlen for integer types. The data types implies the corresponding
162  * // minimal payload length.
163  * static struct nla_policy my_policy[ATTR_MAX+1] = {
164  *     [ATTR_FOO] = { .type = NLA_U32 },
165  *
166  * // Numeric values can be appended directly using the respective
167  * // nla_put_uxxx() function
168  * nla_put_u32(msg, ATTR_FOO, 123);
169  *
170  * // Same for the receiving side.
171  * if (attrs[ATTR_FOO])
172  *     uint32_t foo = nla_get_u32(attrs[ATTR_FOO]);
173  * @endcode
174  *
175  * @par Character string (NLA_STRING)
176  * This data type represents a NUL terminated character string of variable
177  * length. For binary data streams the type NLA_UNSPEC is recommended.
178  * @par
179  * @code
180  * // Enforce a NUL terminated character string of at most 4 characters
181  * // including the NUL termination.
182  * static struct nla_policy my_policy[ATTR_MAX+1] = {
183  *     [ATTR_BAR] = { .type = NLA_STRING, maxlen = 4 },
184  *
185  * // nla_put_string() creates a string attribute of the necessary length
186  * // and appends it to the message including the NUL termination.
187  * nla_put_string(msg, ATTR_BAR, "some text");
188  *
189  * // It is safe to use the returned character string directly if the
190  * // attribute has been validated as the validation enforces the proper
191  * // termination of the string.
192  * if (attrs[ATTR_BAR])
193  *     char *text = nla_get_string(attrs[ATTR_BAR]);
194  * @endcode
195  *
196  * @par Flag (NLA_FLAG)
197  * This attribute type may be used to indicate the presence of a flag. The
198  * attribute is only valid if the payload length is zero. The presence of
199  * the attribute header indicates the presence of the flag.
200  * @par
201  * @code
202  * // This attribute type is special as .minlen and .maxlen have no effect.
203  * static struct nla_policy my_policy[ATTR_MAX+1] = {
204  *     [ATTR_FLAG] = { .type = NLA_FLAG },
205  *
206  * // nla_put_flag() appends a zero sized attribute to the message.
207  * nla_put_flag(msg, ATTR_FLAG);
208  *
209  * // There is no need for a receival function, the presence is the value.
210  * if (attrs[ATTR_FLAG])
211  *     // flag is present
212  * @endcode
213  *
214  * @par Micro Seconds (NLA_MSECS)
215  *
216  * @par Nested Attribute (NLA_NESTED)
217  * Attributes can be nested and put into a container to create groups, lists
218  * or to construct trees of attributes. Nested attributes are often used to
219  * pass attributes to a subsystem where the top layer has no knowledge of the
220  * configuration possibilities of each subsystem.
221  * @par
222  * \b Note: When validating the attributes using nlmsg_validate() or
223  * nlmsg_parse() it will only affect the top level attributes. Each
224  * level of nested attributes must be validated seperately using
225  * nla_parse_nested() or nla_validate().
226  * @par
227  * @code
228  * // The minimal length policy may be used to enforce the presence of at
229  * // least one attribute.
230  * static struct nla_policy my_policy[ATTR_MAX+1] = {
231  *     [ATTR_OPTS] = { .type = NLA_NESTED, minlen = NLA_HDRLEN },
232  *
233  * // Nested attributes are constructed by enclosing the attributes
234  * // to be nested with calls to nla_nest_start() respetively nla_nest_end().
235  * struct nlattr *opts = nla_nest_start(msg, ATTR_OPTS);
236  * nla_put_u32(msg, ATTR_FOO, 123);
237  * nla_put_string(msg, ATTR_BAR, "some text");
238  * nla_nest_end(msg, opts);
239  *
240  * // Various methods exist to parse nested attributes, the easiest being
241  * // nla_parse_nested() which also allows validation in the same step.
242  * if (attrs[ATTR_OPTS]) {
243  *     struct nlattr *nested[ATTR_MAX+1];
244  *
245  *     nla_parse_nested(nested, ATTR_MAX, attrs[ATTR_OPTS], &policy);
246  *
247  *     if (nested[ATTR_FOO])
248  *         uint32_t foo = nla_get_u32(nested[ATTR_FOO]);
249  * }
250  * @endcode
251  *
252  * @subsection attr_exceptions Exception Based Attribute Construction
253  * Often a large number of attributes are added to a message in a single
254  * function. In order to simplify error handling, a second set of
255  * construction functions exist which jump to a error label when they
256  * fail instead of returning an error code. This second set consists
257  * of macros which are named after their error code based counterpart
258  * except that the name is written all uppercase.
259  *
260  * All of the macros jump to the target \c nla_put_failure if they fail.
261  * @code
262  * void my_func(struct nl_msg *msg)
263  * {
264  *     NLA_PUT_U32(msg, ATTR_FOO, 10);
265  *     NLA_PUT_STRING(msg, ATTR_BAR, "bar");
266  *
267  *     return 0;
268  *
269  * nla_put_failure:
270  *     return -NLE_NOMEM;
271  * }
272  * @endcode
273  *
274  * @subsection attr_examples Examples
275  * @par Example 1.1 Constructing a netlink message with attributes.
276  * @code
277  * struct nl_msg *build_msg(int ifindex, struct nl_addr *lladdr, int mtu)
278  * {
279  *     struct nl_msg *msg;
280  *     struct nlattr *info, *vlan;
281  *     struct ifinfomsg ifi = {
282  *         .ifi_family = AF_INET,
283  *         .ifi_index = ifindex,
284  *     };
285  *
286  *     // Allocate a new netlink message, type=RTM_SETLINK, flags=NLM_F_ECHO
287  *     if (!(msg = nlmsg_alloc_simple(RTM_SETLINK, NLM_F_ECHO)))
288  *         return NULL;
289  *
290  *     // Append the family specific header (struct ifinfomsg)
291  *     if (nlmsg_append(msg, &ifi, sizeof(ifi), NLMSG_ALIGNTO) < 0)
292  *         goto nla_put_failure
293  *
294  *     // Append a 32 bit integer attribute to carry the MTU
295  *     NLA_PUT_U32(msg, IFLA_MTU, mtu);
296  *
297  *     // Append a unspecific attribute to carry the link layer address
298  *     NLA_PUT_ADDR(msg, IFLA_ADDRESS, lladdr);
299  *
300  *     // Append a container for nested attributes to carry link information
301  *     if (!(info = nla_nest_start(msg, IFLA_LINKINFO)))
302  *         goto nla_put_failure;
303  *
304  *     // Put a string attribute into the container
305  *     NLA_PUT_STRING(msg, IFLA_INFO_KIND, "vlan");
306  *
307  *     // Append another container inside the open container to carry
308  *     // vlan specific attributes
309  *     if (!(vlan = nla_nest_start(msg, IFLA_INFO_DATA)))
310  *         goto nla_put_failure;
311  *
312  *     // add vlan specific info attributes here...
313  *
314  *     // Finish nesting the vlan attributes and close the second container.
315  *     nla_nest_end(msg, vlan);
316  *
317  *     // Finish nesting the link info attribute and close the first container.
318  *     nla_nest_end(msg, info);
319  *
320  *     return msg;
321  *
322  * // If any of the construction macros fails, we end up here.
323  * nla_put_failure:
324  *     nlmsg_free(msg);
325  *     return NULL;
326  * }
327  * @endcode
328  *
329  * @par Example 2.1 Parsing a netlink message with attributes.
330  * @code
331  * int parse_message(struct nl_msg *msg)
332  * {
333  *     // The policy defines two attributes: a 32 bit integer and a container
334  *     // for nested attributes.
335  *     struct nla_policy attr_policy[ATTR_MAX+1] = {
336  *         [ATTR_FOO] = { .type = NLA_U32 },
337  *         [ATTR_BAR] = { .type = NLA_NESTED },
338  *     };
339  *     struct nlattr *attrs[ATTR_MAX+1];
340  *     int err;
341  *
342  *     // The nlmsg_parse() function will make sure that the message contains
343  *     // enough payload to hold the header (struct my_hdr), validates any
344  *     // attributes attached to the messages and stores a pointer to each
345  *     // attribute in the attrs[] array accessable by attribute type.
346  *     if ((err = nlmsg_parse(nlmsg_hdr(msg), sizeof(struct my_hdr), attrs,
347  *                            ATTR_MAX, attr_policy)) < 0)
348  *         goto errout;
349  *
350  *     if (attrs[ATTR_FOO]) {
351  *         // It is safe to directly access the attribute payload without
352  *         // any further checks since nlmsg_parse() enforced the policy.
353  *         uint32_t foo = nla_get_u32(attrs[ATTR_FOO]);
354  *     }
355  *
356  *     if (attrs[ATTR_BAR]) {
357  *         struct nlattr *nested[NESTED_MAX+1];
358  *
359  *         // Attributes nested in a container can be parsed the same way
360  *         // as top level attributes.
361  *         if ((err = nla_parse_nested(nested, NESTED_MAX, attrs[ATTR_BAR],
362  *                                     nested_policy)) < 0)
363  *             goto errout;
364  *
365  *         // Process nested attributes here.
366  *     }
367  *
368  *     err = 0;
369  * errout:
370  *     return err;
371  * }
372  * @endcode
373  *
374  * @{
375  */
376
377 /**
378  * @name Attribute Size Calculation
379  * @{
380  */
381
382 /** @} */
383
384 /**
385  * @name Parsing Attributes
386  * @{
387  */
388
389 /**
390  * Check if the attribute header and payload can be accessed safely.
391  * @arg nla             Attribute of any kind.
392  * @arg remaining       Number of bytes remaining in attribute stream.
393  *
394  * Verifies that the header and payload do not exceed the number of
395  * bytes left in the attribute stream. This function must be called
396  * before access the attribute header or payload when iterating over
397  * the attribute stream using nla_next().
398  *
399  * @return True if the attribute can be accessed safely, false otherwise.
400  */
401 int nla_ok(const struct nlattr *nla, int remaining)
402 {
403         return remaining >= sizeof(*nla) &&
404                nla->nla_len >= sizeof(*nla) &&
405                nla->nla_len <= remaining;
406 }
407
408 /**
409  * Return next attribute in a stream of attributes.
410  * @arg nla             Attribute of any kind.
411  * @arg remaining       Variable to count remaining bytes in stream.
412  *
413  * Calculates the offset to the next attribute based on the attribute
414  * given. The attribute provided is assumed to be accessible, the
415  * caller is responsible to use nla_ok() beforehand. The offset (length
416  * of specified attribute including padding) is then subtracted from
417  * the remaining bytes variable and a pointer to the next attribute is
418  * returned.
419  *
420  * nla_next() can be called as long as remainig is >0.
421  *
422  * @return Pointer to next attribute.
423  */
424 struct nlattr *nla_next(const struct nlattr *nla, int *remaining)
425 {
426         int totlen = NLA_ALIGN(nla->nla_len);
427
428         *remaining -= totlen;
429         return (struct nlattr *) ((char *) nla + totlen);
430 }
431
432 static uint16_t nla_attr_minlen[NLA_TYPE_MAX+1] = {
433         [NLA_U8]        = sizeof(uint8_t),
434         [NLA_U16]       = sizeof(uint16_t),
435         [NLA_U32]       = sizeof(uint32_t),
436         [NLA_U64]       = sizeof(uint64_t),
437         [NLA_STRING]    = 1,
438 };
439
440 static int validate_nla(struct nlattr *nla, int maxtype,
441                         struct nla_policy *policy)
442 {
443         struct nla_policy *pt;
444         int minlen = 0, type = nla_type(nla);
445
446         if (type <= 0 || type > maxtype)
447                 return 0;
448
449         pt = &policy[type];
450
451         if (pt->type > NLA_TYPE_MAX)
452                 BUG();
453
454         if (pt->minlen)
455                 minlen = pt->minlen;
456         else if (pt->type != NLA_UNSPEC)
457                 minlen = nla_attr_minlen[pt->type];
458
459         if (pt->type == NLA_FLAG && nla_len(nla) > 0)
460                 return -NLE_RANGE;
461
462         if (nla_len(nla) < minlen)
463                 return -NLE_RANGE;
464
465         if (pt->maxlen && nla_len(nla) > pt->maxlen)
466                 return -NLE_RANGE;
467
468         if (pt->type == NLA_STRING) {
469                 char *data = nla_data(nla);
470                 if (data[nla_len(nla) - 1] != '\0')
471                         return -NLE_INVAL;
472         }
473
474         return 0;
475 }
476
477
478 /**
479  * Create attribute index based on a stream of attributes.
480  * @arg tb              Index array to be filled (maxtype+1 elements).
481  * @arg maxtype         Maximum attribute type expected and accepted.
482  * @arg head            Head of attribute stream.
483  * @arg len             Length of attribute stream.
484  * @arg policy          Attribute validation policy.
485  *
486  * Iterates over the stream of attributes and stores a pointer to each
487  * attribute in the index array using the attribute type as index to
488  * the array. Attribute with a type greater than the maximum type
489  * specified will be silently ignored in order to maintain backwards
490  * compatibility. If \a policy is not NULL, the attribute will be
491  * validated using the specified policy.
492  *
493  * @see nla_validate
494  * @return 0 on success or a negative error code.
495  */
496 int nla_parse(struct nlattr *tb[], int maxtype, struct nlattr *head, int len,
497               struct nla_policy *policy)
498 {
499         struct nlattr *nla;
500         int rem, err;
501
502         memset(tb, 0, sizeof(struct nlattr *) * (maxtype + 1));
503
504         nla_for_each_attr(nla, head, len, rem) {
505                 int type = nla_type(nla);
506
507                 if (type == 0) {
508                         fprintf(stderr, "Illegal nla->nla_type == 0\n");
509                         continue;
510                 }
511
512                 if (type <= maxtype) {
513                         if (policy) {
514                                 err = validate_nla(nla, maxtype, policy);
515                                 if (err < 0)
516                                         goto errout;
517                         }
518
519                         tb[type] = nla;
520                 }
521         }
522
523         if (rem > 0)
524                 fprintf(stderr, "netlink: %d bytes leftover after parsing "
525                        "attributes.\n", rem);
526
527         err = 0;
528 errout:
529         return err;
530 }
531
532 /**
533  * Validate a stream of attributes.
534  * @arg head            Head of attributes stream.
535  * @arg len             Length of attributes stream.
536  * @arg maxtype         Maximum attribute type expected and accepted.
537  * @arg policy          Validation policy.
538  *
539  * Iterates over the stream of attributes and validates each attribute
540  * one by one using the specified policy. Attributes with a type greater
541  * than the maximum type specified will be silently ignored in order to
542  * maintain backwards compatibility.
543  *
544  * See \ref attr_datatypes for more details on what kind of validation
545  * checks are performed on each attribute data type.
546  *
547  * @return 0 on success or a negative error code.
548  */
549 int nla_validate(struct nlattr *head, int len, int maxtype,
550                  struct nla_policy *policy)
551 {
552         struct nlattr *nla;
553         int rem, err;
554
555         nla_for_each_attr(nla, head, len, rem) {
556                 err = validate_nla(nla, maxtype, policy);
557                 if (err < 0)
558                         goto errout;
559         }
560
561         err = 0;
562 errout:
563         return err;
564 }
565
566 /**
567  * Find a single attribute in a stream of attributes.
568  * @arg head            Head of attributes stream.
569  * @arg len             Length of attributes stream.
570  * @arg attrtype        Attribute type to look for.
571  *
572  * Iterates over the stream of attributes and compares each type with
573  * the type specified. Returns the first attribute which matches the
574  * type.
575  *
576  * @return Pointer to attribute found or NULL.
577  */
578 struct nlattr *nla_find(struct nlattr *head, int len, int attrtype)
579 {
580         struct nlattr *nla;
581         int rem;
582
583         nla_for_each_attr(nla, head, len, rem)
584                 if (nla_type(nla) == attrtype)
585                         return nla;
586
587         return NULL;
588 }
589
590 /** @} */
591
592 /**
593  * @name Unspecific Attribute
594  * @{
595  */
596
597 /**
598  * Reserve space for a attribute.
599  * @arg msg             Netlink Message.
600  * @arg attrtype        Attribute Type.
601  * @arg attrlen         Length of payload.
602  *
603  * Reserves room for a attribute in the specified netlink message and
604  * fills in the attribute header (type, length). Returns NULL if there
605  * is unsuficient space for the attribute.
606  *
607  * Any padding between payload and the start of the next attribute is
608  * zeroed out.
609  *
610  * @return Pointer to start of attribute or NULL on failure.
611  */
612 struct nlattr *nla_reserve(struct nl_msg *msg, int attrtype, int attrlen)
613 {
614         struct nlattr *nla;
615         int tlen;
616         
617         tlen = NLMSG_ALIGN(msg->nm_nlh->nlmsg_len) + nla_total_size(attrlen);
618
619         if ((tlen + msg->nm_nlh->nlmsg_len) > msg->nm_size)
620                 return NULL;
621
622         nla = (struct nlattr *) nlmsg_tail(msg->nm_nlh);
623         nla->nla_type = attrtype;
624         nla->nla_len = nla_attr_size(attrlen);
625
626         memset((unsigned char *) nla + nla->nla_len, 0, nla_padlen(attrlen));
627         msg->nm_nlh->nlmsg_len = tlen;
628
629         NL_DBG(2, "msg %p: Reserved %d bytes at offset +%td for attr %d "
630                   "nlmsg_len=%d\n", msg, attrlen,
631                   (void *) nla - nlmsg_data(msg->nm_nlh),
632                   attrtype, msg->nm_nlh->nlmsg_len);
633
634         return nla;
635 }
636
637 /**
638  * Add a unspecific attribute to netlink message.
639  * @arg msg             Netlink message.
640  * @arg attrtype        Attribute type.
641  * @arg datalen         Length of data to be used as payload.
642  * @arg data            Pointer to data to be used as attribute payload.
643  *
644  * Reserves room for a unspecific attribute and copies the provided data
645  * into the message as payload of the attribute. Returns an error if there
646  * is insufficient space for the attribute.
647  *
648  * @see nla_reserve
649  * @return 0 on success or a negative error code.
650  */
651 int nla_put(struct nl_msg *msg, int attrtype, int datalen, const void *data)
652 {
653         struct nlattr *nla;
654
655         nla = nla_reserve(msg, attrtype, datalen);
656         if (!nla)
657                 return -NLE_NOMEM;
658
659         memcpy(nla_data(nla), data, datalen);
660         NL_DBG(2, "msg %p: Wrote %d bytes at offset +%td for attr %d\n",
661                msg, datalen, (void *) nla - nlmsg_data(msg->nm_nlh), attrtype);
662
663         return 0;
664 }
665
666
667
668 /** @} */