strip the kernel version suffix from target directories, except for brcm-2.4 (the...
[15.05/openwrt.git] / target / linux / etrax / patches / generic_2.6 / 002-lzma_decompress.patch
1 --- linux-2.6.19.old/lib/Makefile       2007-04-18 17:41:22.679403384 +0200
2 +++ linux-2.6.19.dev/lib/Makefile       2007-04-18 17:41:43.303268080 +0200
3 @@ -54,6 +54,7 @@
4  obj-$(CONFIG_AUDIT_GENERIC) += audit.o
5  
6  obj-$(CONFIG_SWIOTLB) += swiotlb.o
7 +obj-y += LzmaDecode.o
8  
9  hostprogs-y    := gen_crc32table
10  clean-files    := crc32table.h
11 --- linux-2.6.19.old/lib/LzmaDecode.c   1970-01-01 01:00:00.000000000 +0100
12 +++ linux-2.6.19.dev/lib/LzmaDecode.c   2006-12-14 03:13:20.000000000 +0100
13 @@ -0,0 +1,663 @@
14 +/*
15 +  LzmaDecode.c
16 +  LZMA Decoder
17 +
18 +  LZMA SDK 4.05 Copyright (c) 1999-2004 Igor Pavlov (2004-08-25)
19 +  http://www.7-zip.org/
20 +
21 +  LZMA SDK is licensed under two licenses:
22 +  1) GNU Lesser General Public License (GNU LGPL)
23 +  2) Common Public License (CPL)
24 +  It means that you can select one of these two licenses and
25 +  follow rules of that license.
26 +
27 +  SPECIAL EXCEPTION:
28 +  Igor Pavlov, as the author of this code, expressly permits you to
29 +  statically or dynamically link your code (or bind by name) to the
30 +  interfaces of this file without subjecting your linked code to the
31 +  terms of the CPL or GNU LGPL. Any modifications or additions
32 +  to this file, however, are subject to the LGPL or CPL terms.
33 +*/
34 +
35 +#include <linux/LzmaDecode.h>
36 +
37 +#ifndef Byte
38 +#define Byte unsigned char
39 +#endif
40 +
41 +#define kNumTopBits 24
42 +#define kTopValue ((UInt32)1 << kNumTopBits)
43 +
44 +#define kNumBitModelTotalBits 11
45 +#define kBitModelTotal (1 << kNumBitModelTotalBits)
46 +#define kNumMoveBits 5
47 +
48 +typedef struct _CRangeDecoder
49 +{
50 +  Byte *Buffer;
51 +  Byte *BufferLim;
52 +  UInt32 Range;
53 +  UInt32 Code;
54 +  #ifdef _LZMA_IN_CB
55 +  ILzmaInCallback *InCallback;
56 +  int Result;
57 +  #endif
58 +  int ExtraBytes;
59 +} CRangeDecoder;
60 +
61 +Byte RangeDecoderReadByte(CRangeDecoder *rd)
62 +{
63 +  if (rd->Buffer == rd->BufferLim)
64 +  {
65 +    #ifdef _LZMA_IN_CB
66 +    UInt32 size;
67 +    rd->Result = rd->InCallback->Read(rd->InCallback, &rd->Buffer, &size);
68 +    rd->BufferLim = rd->Buffer + size;
69 +    if (size == 0)
70 +    #endif
71 +    {
72 +      rd->ExtraBytes = 1;
73 +      return 0xFF;
74 +    }
75 +  }
76 +  return (*rd->Buffer++);
77 +}
78 +
79 +/* #define ReadByte (*rd->Buffer++) */
80 +#define ReadByte (RangeDecoderReadByte(rd))
81 +
82 +void RangeDecoderInit(CRangeDecoder *rd,
83 +  #ifdef _LZMA_IN_CB
84 +    ILzmaInCallback *inCallback
85 +  #else
86 +    Byte *stream, UInt32 bufferSize
87 +  #endif
88 +    )
89 +{
90 +  int i;
91 +  #ifdef _LZMA_IN_CB
92 +  rd->InCallback = inCallback;
93 +  rd->Buffer = rd->BufferLim = 0;
94 +  #else
95 +  rd->Buffer = stream;
96 +  rd->BufferLim = stream + bufferSize;
97 +  #endif
98 +  rd->ExtraBytes = 0;
99 +  rd->Code = 0;
100 +  rd->Range = (0xFFFFFFFF);
101 +  for(i = 0; i < 5; i++)
102 +    rd->Code = (rd->Code << 8) | ReadByte;
103 +}
104 +
105 +#define RC_INIT_VAR UInt32 range = rd->Range; UInt32 code = rd->Code;
106 +#define RC_FLUSH_VAR rd->Range = range; rd->Code = code;
107 +#define RC_NORMALIZE if (range < kTopValue) { range <<= 8; code = (code << 8) | ReadByte; }
108 +
109 +UInt32 RangeDecoderDecodeDirectBits(CRangeDecoder *rd, int numTotalBits)
110 +{
111 +  RC_INIT_VAR
112 +  UInt32 result = 0;
113 +  int i;
114 +  for (i = numTotalBits; i > 0; i--)
115 +  {
116 +    /* UInt32 t; */
117 +    range >>= 1;
118 +
119 +    result <<= 1;
120 +    if (code >= range)
121 +    {
122 +      code -= range;
123 +      result |= 1;
124 +    }
125 +    /*
126 +    t = (code - range) >> 31;
127 +    t &= 1;
128 +    code -= range & (t - 1);
129 +    result = (result + result) | (1 - t);
130 +    */
131 +    RC_NORMALIZE
132 +  }
133 +  RC_FLUSH_VAR
134 +  return result;
135 +}
136 +
137 +int RangeDecoderBitDecode(CProb *prob, CRangeDecoder *rd)
138 +{
139 +  UInt32 bound = (rd->Range >> kNumBitModelTotalBits) * *prob;
140 +  if (rd->Code < bound)
141 +  {
142 +    rd->Range = bound;
143 +    *prob += (kBitModelTotal - *prob) >> kNumMoveBits;
144 +    if (rd->Range < kTopValue)
145 +    {
146 +      rd->Code = (rd->Code << 8) | ReadByte;
147 +      rd->Range <<= 8;
148 +    }
149 +    return 0;
150 +  }
151 +  else
152 +  {
153 +    rd->Range -= bound;
154 +    rd->Code -= bound;
155 +    *prob -= (*prob) >> kNumMoveBits;
156 +    if (rd->Range < kTopValue)
157 +    {
158 +      rd->Code = (rd->Code << 8) | ReadByte;
159 +      rd->Range <<= 8;
160 +    }
161 +    return 1;
162 +  }
163 +}
164 +
165 +#define RC_GET_BIT2(prob, mi, A0, A1) \
166 +  UInt32 bound = (range >> kNumBitModelTotalBits) * *prob; \
167 +  if (code < bound) \
168 +    { A0; range = bound; *prob += (kBitModelTotal - *prob) >> kNumMoveBits; mi <<= 1; } \
169 +  else \
170 +    { A1; range -= bound; code -= bound; *prob -= (*prob) >> kNumMoveBits; mi = (mi + mi) + 1; } \
171 +  RC_NORMALIZE
172 +
173 +#define RC_GET_BIT(prob, mi) RC_GET_BIT2(prob, mi, ; , ;)
174 +
175 +int RangeDecoderBitTreeDecode(CProb *probs, int numLevels, CRangeDecoder *rd)
176 +{
177 +  int mi = 1;
178 +  int i;
179 +  #ifdef _LZMA_LOC_OPT
180 +  RC_INIT_VAR
181 +  #endif
182 +  for(i = numLevels; i > 0; i--)
183 +  {
184 +    #ifdef _LZMA_LOC_OPT
185 +    CProb *prob = probs + mi;
186 +    RC_GET_BIT(prob, mi)
187 +    #else
188 +    mi = (mi + mi) + RangeDecoderBitDecode(probs + mi, rd);
189 +    #endif
190 +  }
191 +  #ifdef _LZMA_LOC_OPT
192 +  RC_FLUSH_VAR
193 +  #endif
194 +  return mi - (1 << numLevels);
195 +}
196 +
197 +int RangeDecoderReverseBitTreeDecode(CProb *probs, int numLevels, CRangeDecoder *rd)
198 +{
199 +  int mi = 1;
200 +  int i;
201 +  int symbol = 0;
202 +  #ifdef _LZMA_LOC_OPT
203 +  RC_INIT_VAR
204 +  #endif
205 +  for(i = 0; i < numLevels; i++)
206 +  {
207 +    #ifdef _LZMA_LOC_OPT
208 +    CProb *prob = probs + mi;
209 +    RC_GET_BIT2(prob, mi, ; , symbol |= (1 << i))
210 +    #else
211 +    int bit = RangeDecoderBitDecode(probs + mi, rd);
212 +    mi = mi + mi + bit;
213 +    symbol |= (bit << i);
214 +    #endif
215 +  }
216 +  #ifdef _LZMA_LOC_OPT
217 +  RC_FLUSH_VAR
218 +  #endif
219 +  return symbol;
220 +}
221 +
222 +Byte LzmaLiteralDecode(CProb *probs, CRangeDecoder *rd)
223 +{
224 +  int symbol = 1;
225 +  #ifdef _LZMA_LOC_OPT
226 +  RC_INIT_VAR
227 +  #endif
228 +  do
229 +  {
230 +    #ifdef _LZMA_LOC_OPT
231 +    CProb *prob = probs + symbol;
232 +    RC_GET_BIT(prob, symbol)
233 +    #else
234 +    symbol = (symbol + symbol) | RangeDecoderBitDecode(probs + symbol, rd);
235 +    #endif
236 +  }
237 +  while (symbol < 0x100);
238 +  #ifdef _LZMA_LOC_OPT
239 +  RC_FLUSH_VAR
240 +  #endif
241 +  return symbol;
242 +}
243 +
244 +Byte LzmaLiteralDecodeMatch(CProb *probs, CRangeDecoder *rd, Byte matchByte)
245 +{
246 +  int symbol = 1;
247 +  #ifdef _LZMA_LOC_OPT
248 +  RC_INIT_VAR
249 +  #endif
250 +  do
251 +  {
252 +    int bit;
253 +    int matchBit = (matchByte >> 7) & 1;
254 +    matchByte <<= 1;
255 +    #ifdef _LZMA_LOC_OPT
256 +    {
257 +      CProb *prob = probs + ((1 + matchBit) << 8) + symbol;
258 +      RC_GET_BIT2(prob, symbol, bit = 0, bit = 1)
259 +    }
260 +    #else
261 +    bit = RangeDecoderBitDecode(probs + ((1 + matchBit) << 8) + symbol, rd);
262 +    symbol = (symbol << 1) | bit;
263 +    #endif
264 +    if (matchBit != bit)
265 +    {
266 +      while (symbol < 0x100)
267 +      {
268 +        #ifdef _LZMA_LOC_OPT
269 +        CProb *prob = probs + symbol;
270 +        RC_GET_BIT(prob, symbol)
271 +        #else
272 +        symbol = (symbol + symbol) | RangeDecoderBitDecode(probs + symbol, rd);
273 +        #endif
274 +      }
275 +      break;
276 +    }
277 +  }
278 +  while (symbol < 0x100);
279 +  #ifdef _LZMA_LOC_OPT
280 +  RC_FLUSH_VAR
281 +  #endif
282 +  return symbol;
283 +}
284 +
285 +#define kNumPosBitsMax 4
286 +#define kNumPosStatesMax (1 << kNumPosBitsMax)
287 +
288 +#define kLenNumLowBits 3
289 +#define kLenNumLowSymbols (1 << kLenNumLowBits)
290 +#define kLenNumMidBits 3
291 +#define kLenNumMidSymbols (1 << kLenNumMidBits)
292 +#define kLenNumHighBits 8
293 +#define kLenNumHighSymbols (1 << kLenNumHighBits)
294 +
295 +#define LenChoice 0
296 +#define LenChoice2 (LenChoice + 1)
297 +#define LenLow (LenChoice2 + 1)
298 +#define LenMid (LenLow + (kNumPosStatesMax << kLenNumLowBits))
299 +#define LenHigh (LenMid + (kNumPosStatesMax << kLenNumMidBits))
300 +#define kNumLenProbs (LenHigh + kLenNumHighSymbols)
301 +
302 +int LzmaLenDecode(CProb *p, CRangeDecoder *rd, int posState)
303 +{
304 +  if(RangeDecoderBitDecode(p + LenChoice, rd) == 0)
305 +    return RangeDecoderBitTreeDecode(p + LenLow +
306 +        (posState << kLenNumLowBits), kLenNumLowBits, rd);
307 +  if(RangeDecoderBitDecode(p + LenChoice2, rd) == 0)
308 +    return kLenNumLowSymbols + RangeDecoderBitTreeDecode(p + LenMid +
309 +        (posState << kLenNumMidBits), kLenNumMidBits, rd);
310 +  return kLenNumLowSymbols + kLenNumMidSymbols +
311 +      RangeDecoderBitTreeDecode(p + LenHigh, kLenNumHighBits, rd);
312 +}
313 +
314 +#define kNumStates 12
315 +
316 +#define kStartPosModelIndex 4
317 +#define kEndPosModelIndex 14
318 +#define kNumFullDistances (1 << (kEndPosModelIndex >> 1))
319 +
320 +#define kNumPosSlotBits 6
321 +#define kNumLenToPosStates 4
322 +
323 +#define kNumAlignBits 4
324 +#define kAlignTableSize (1 << kNumAlignBits)
325 +
326 +#define kMatchMinLen 2
327 +
328 +#define IsMatch 0
329 +#define IsRep (IsMatch + (kNumStates << kNumPosBitsMax))
330 +#define IsRepG0 (IsRep + kNumStates)
331 +#define IsRepG1 (IsRepG0 + kNumStates)
332 +#define IsRepG2 (IsRepG1 + kNumStates)
333 +#define IsRep0Long (IsRepG2 + kNumStates)
334 +#define PosSlot (IsRep0Long + (kNumStates << kNumPosBitsMax))
335 +#define SpecPos (PosSlot + (kNumLenToPosStates << kNumPosSlotBits))
336 +#define Align (SpecPos + kNumFullDistances - kEndPosModelIndex)
337 +#define LenCoder (Align + kAlignTableSize)
338 +#define RepLenCoder (LenCoder + kNumLenProbs)
339 +#define Literal (RepLenCoder + kNumLenProbs)
340 +
341 +#if Literal != LZMA_BASE_SIZE
342 +StopCompilingDueBUG
343 +#endif
344 +
345 +#ifdef _LZMA_OUT_READ
346 +
347 +typedef struct _LzmaVarState
348 +{
349 +  CRangeDecoder RangeDecoder;
350 +  Byte *Dictionary;
351 +  UInt32 DictionarySize;
352 +  UInt32 DictionaryPos;
353 +  UInt32 GlobalPos;
354 +  UInt32 Reps[4];
355 +  int lc;
356 +  int lp;
357 +  int pb;
358 +  int State;
359 +  int PreviousIsMatch;
360 +  int RemainLen;
361 +} LzmaVarState;
362 +
363 +int LzmaDecoderInit(
364 +    unsigned char *buffer, UInt32 bufferSize,
365 +    int lc, int lp, int pb,
366 +    unsigned char *dictionary, UInt32 dictionarySize,
367 +    #ifdef _LZMA_IN_CB
368 +    ILzmaInCallback *inCallback
369 +    #else
370 +    unsigned char *inStream, UInt32 inSize
371 +    #endif
372 +    )
373 +{
374 +  LzmaVarState *vs = (LzmaVarState *)buffer;
375 +  CProb *p = (CProb *)(buffer + sizeof(LzmaVarState));
376 +  UInt32 numProbs = Literal + ((UInt32)LZMA_LIT_SIZE << (lc + lp));
377 +  UInt32 i;
378 +  if (bufferSize < numProbs * sizeof(CProb) + sizeof(LzmaVarState))
379 +    return LZMA_RESULT_NOT_ENOUGH_MEM;
380 +  vs->Dictionary = dictionary;
381 +  vs->DictionarySize = dictionarySize;
382 +  vs->DictionaryPos = 0;
383 +  vs->GlobalPos = 0;
384 +  vs->Reps[0] = vs->Reps[1] = vs->Reps[2] = vs->Reps[3] = 1;
385 +  vs->lc = lc;
386 +  vs->lp = lp;
387 +  vs->pb = pb;
388 +  vs->State = 0;
389 +  vs->PreviousIsMatch = 0;
390 +  vs->RemainLen = 0;
391 +  dictionary[dictionarySize - 1] = 0;
392 +  for (i = 0; i < numProbs; i++)
393 +    p[i] = kBitModelTotal >> 1;
394 +  RangeDecoderInit(&vs->RangeDecoder,
395 +      #ifdef _LZMA_IN_CB
396 +      inCallback
397 +      #else
398 +      inStream, inSize
399 +      #endif
400 +  );
401 +  return LZMA_RESULT_OK;
402 +}
403 +
404 +int LzmaDecode(unsigned char *buffer,
405 +    unsigned char *outStream, UInt32 outSize,
406 +    UInt32 *outSizeProcessed)
407 +{
408 +  LzmaVarState *vs = (LzmaVarState *)buffer;
409 +  CProb *p = (CProb *)(buffer + sizeof(LzmaVarState));
410 +  CRangeDecoder rd = vs->RangeDecoder;
411 +  int state = vs->State;
412 +  int previousIsMatch = vs->PreviousIsMatch;
413 +  Byte previousByte;
414 +  UInt32 rep0 = vs->Reps[0], rep1 = vs->Reps[1], rep2 = vs->Reps[2], rep3 = vs->Reps[3];
415 +  UInt32 nowPos = 0;
416 +  UInt32 posStateMask = (1 << (vs->pb)) - 1;
417 +  UInt32 literalPosMask = (1 << (vs->lp)) - 1;
418 +  int lc = vs->lc;
419 +  int len = vs->RemainLen;
420 +  UInt32 globalPos = vs->GlobalPos;
421 +
422 +  Byte *dictionary = vs->Dictionary;
423 +  UInt32 dictionarySize = vs->DictionarySize;
424 +  UInt32 dictionaryPos = vs->DictionaryPos;
425 +
426 +  if (len == -1)
427 +  {
428 +    *outSizeProcessed = 0;
429 +    return LZMA_RESULT_OK;
430 +  }
431 +
432 +  while(len > 0 && nowPos < outSize)
433 +  {
434 +    UInt32 pos = dictionaryPos - rep0;
435 +    if (pos >= dictionarySize)
436 +      pos += dictionarySize;
437 +    outStream[nowPos++] = dictionary[dictionaryPos] = dictionary[pos];
438 +    if (++dictionaryPos == dictionarySize)
439 +      dictionaryPos = 0;
440 +    len--;
441 +  }
442 +  if (dictionaryPos == 0)
443 +    previousByte = dictionary[dictionarySize - 1];
444 +  else
445 +    previousByte = dictionary[dictionaryPos - 1];
446 +#else
447 +
448 +int LzmaDecode(
449 +    Byte *buffer, UInt32 bufferSize,
450 +    int lc, int lp, int pb,
451 +    #ifdef _LZMA_IN_CB
452 +    ILzmaInCallback *inCallback,
453 +    #else
454 +    unsigned char *inStream, UInt32 inSize,
455 +    #endif
456 +    unsigned char *outStream, UInt32 outSize,
457 +    UInt32 *outSizeProcessed)
458 +{
459 +  UInt32 numProbs = Literal + ((UInt32)LZMA_LIT_SIZE << (lc + lp));
460 +  CProb *p = (CProb *)buffer;
461 +  CRangeDecoder rd;
462 +  UInt32 i;
463 +  int state = 0;
464 +  int previousIsMatch = 0;
465 +  Byte previousByte = 0;
466 +  UInt32 rep0 = 1, rep1 = 1, rep2 = 1, rep3 = 1;
467 +  UInt32 nowPos = 0;
468 +  UInt32 posStateMask = (1 << pb) - 1;
469 +  UInt32 literalPosMask = (1 << lp) - 1;
470 +  int len = 0;
471 +  if (bufferSize < numProbs * sizeof(CProb))
472 +    return LZMA_RESULT_NOT_ENOUGH_MEM;
473 +  for (i = 0; i < numProbs; i++)
474 +    p[i] = kBitModelTotal >> 1;
475 +  RangeDecoderInit(&rd,
476 +      #ifdef _LZMA_IN_CB
477 +      inCallback
478 +      #else
479 +      inStream, inSize
480 +      #endif
481 +      );
482 +#endif
483 +
484 +  *outSizeProcessed = 0;
485 +  while(nowPos < outSize)
486 +  {
487 +    int posState = (int)(
488 +        (nowPos
489 +        #ifdef _LZMA_OUT_READ
490 +        + globalPos
491 +        #endif
492 +        )
493 +        & posStateMask);
494 +    #ifdef _LZMA_IN_CB
495 +    if (rd.Result != LZMA_RESULT_OK)
496 +      return rd.Result;
497 +    #endif
498 +    if (rd.ExtraBytes != 0)
499 +      return LZMA_RESULT_DATA_ERROR;
500 +    if (RangeDecoderBitDecode(p + IsMatch + (state << kNumPosBitsMax) + posState, &rd) == 0)
501 +    {
502 +      CProb *probs = p + Literal + (LZMA_LIT_SIZE *
503 +        (((
504 +        (nowPos
505 +        #ifdef _LZMA_OUT_READ
506 +        + globalPos
507 +        #endif
508 +        )
509 +        & literalPosMask) << lc) + (previousByte >> (8 - lc))));
510 +
511 +      if (state < 4) state = 0;
512 +      else if (state < 10) state -= 3;
513 +      else state -= 6;
514 +      if (previousIsMatch)
515 +      {
516 +        Byte matchByte;
517 +        #ifdef _LZMA_OUT_READ
518 +        UInt32 pos = dictionaryPos - rep0;
519 +        if (pos >= dictionarySize)
520 +          pos += dictionarySize;
521 +        matchByte = dictionary[pos];
522 +        #else
523 +        matchByte = outStream[nowPos - rep0];
524 +        #endif
525 +        previousByte = LzmaLiteralDecodeMatch(probs, &rd, matchByte);
526 +        previousIsMatch = 0;
527 +      }
528 +      else
529 +        previousByte = LzmaLiteralDecode(probs, &rd);
530 +      outStream[nowPos++] = previousByte;
531 +      #ifdef _LZMA_OUT_READ
532 +      dictionary[dictionaryPos] = previousByte;
533 +      if (++dictionaryPos == dictionarySize)
534 +        dictionaryPos = 0;
535 +      #endif
536 +    }
537 +    else
538 +    {
539 +      previousIsMatch = 1;
540 +      if (RangeDecoderBitDecode(p + IsRep + state, &rd) == 1)
541 +      {
542 +        if (RangeDecoderBitDecode(p + IsRepG0 + state, &rd) == 0)
543 +        {
544 +          if (RangeDecoderBitDecode(p + IsRep0Long + (state << kNumPosBitsMax) + posState, &rd) == 0)
545 +          {
546 +            #ifdef _LZMA_OUT_READ
547 +            UInt32 pos;
548 +            #endif
549 +            if (
550 +               (nowPos
551 +                #ifdef _LZMA_OUT_READ
552 +                + globalPos
553 +                #endif
554 +               )
555 +               == 0)
556 +              return LZMA_RESULT_DATA_ERROR;
557 +            state = state < 7 ? 9 : 11;
558 +            #ifdef _LZMA_OUT_READ
559 +            pos = dictionaryPos - rep0;
560 +            if (pos >= dictionarySize)
561 +              pos += dictionarySize;
562 +            previousByte = dictionary[pos];
563 +            dictionary[dictionaryPos] = previousByte;
564 +            if (++dictionaryPos == dictionarySize)
565 +              dictionaryPos = 0;
566 +            #else
567 +            previousByte = outStream[nowPos - rep0];
568 +            #endif
569 +            outStream[nowPos++] = previousByte;
570 +            continue;
571 +          }
572 +        }
573 +        else
574 +        {
575 +          UInt32 distance;
576 +          if(RangeDecoderBitDecode(p + IsRepG1 + state, &rd) == 0)
577 +            distance = rep1;
578 +          else
579 +          {
580 +            if(RangeDecoderBitDecode(p + IsRepG2 + state, &rd) == 0)
581 +              distance = rep2;
582 +            else
583 +            {
584 +              distance = rep3;
585 +              rep3 = rep2;
586 +            }
587 +            rep2 = rep1;
588 +          }
589 +          rep1 = rep0;
590 +          rep0 = distance;
591 +        }
592 +        len = LzmaLenDecode(p + RepLenCoder, &rd, posState);
593 +        state = state < 7 ? 8 : 11;
594 +      }
595 +      else
596 +      {
597 +        int posSlot;
598 +        rep3 = rep2;
599 +        rep2 = rep1;
600 +        rep1 = rep0;
601 +        state = state < 7 ? 7 : 10;
602 +        len = LzmaLenDecode(p + LenCoder, &rd, posState);
603 +        posSlot = RangeDecoderBitTreeDecode(p + PosSlot +
604 +            ((len < kNumLenToPosStates ? len : kNumLenToPosStates - 1) <<
605 +            kNumPosSlotBits), kNumPosSlotBits, &rd);
606 +        if (posSlot >= kStartPosModelIndex)
607 +        {
608 +          int numDirectBits = ((posSlot >> 1) - 1);
609 +          rep0 = ((2 | ((UInt32)posSlot & 1)) << numDirectBits);
610 +          if (posSlot < kEndPosModelIndex)
611 +          {
612 +            rep0 += RangeDecoderReverseBitTreeDecode(
613 +                p + SpecPos + rep0 - posSlot - 1, numDirectBits, &rd);
614 +          }
615 +          else
616 +          {
617 +            rep0 += RangeDecoderDecodeDirectBits(&rd,
618 +                numDirectBits - kNumAlignBits) << kNumAlignBits;
619 +            rep0 += RangeDecoderReverseBitTreeDecode(p + Align, kNumAlignBits, &rd);
620 +          }
621 +        }
622 +        else
623 +          rep0 = posSlot;
624 +        rep0++;
625 +      }
626 +      if (rep0 == (UInt32)(0))
627 +      {
628 +        /* it's for stream version */
629 +        len = -1;
630 +        break;
631 +      }
632 +      if (rep0 > nowPos
633 +        #ifdef _LZMA_OUT_READ
634 +        + globalPos
635 +        #endif
636 +        )
637 +      {
638 +        return LZMA_RESULT_DATA_ERROR;
639 +      }
640 +      len += kMatchMinLen;
641 +      do
642 +      {
643 +        #ifdef _LZMA_OUT_READ
644 +        UInt32 pos = dictionaryPos - rep0;
645 +        if (pos >= dictionarySize)
646 +          pos += dictionarySize;
647 +        previousByte = dictionary[pos];
648 +        dictionary[dictionaryPos] = previousByte;
649 +        if (++dictionaryPos == dictionarySize)
650 +          dictionaryPos = 0;
651 +        #else
652 +        previousByte = outStream[nowPos - rep0];
653 +        #endif
654 +        outStream[nowPos++] = previousByte;
655 +        len--;
656 +      }
657 +      while(len > 0 && nowPos < outSize);
658 +    }
659 +  }
660 +
661 +  #ifdef _LZMA_OUT_READ
662 +  vs->RangeDecoder = rd;
663 +  vs->DictionaryPos = dictionaryPos;
664 +  vs->GlobalPos = globalPos + nowPos;
665 +  vs->Reps[0] = rep0;
666 +  vs->Reps[1] = rep1;
667 +  vs->Reps[2] = rep2;
668 +  vs->Reps[3] = rep3;
669 +  vs->State = state;
670 +  vs->PreviousIsMatch = previousIsMatch;
671 +  vs->RemainLen = len;
672 +  #endif
673 +
674 +  *outSizeProcessed = nowPos;
675 +  return LZMA_RESULT_OK;
676 +}
677 --- linux-2.6.19.old/include/linux/LzmaDecode.h 1970-01-01 01:00:00.000000000 +0100
678 +++ linux-2.6.19.dev/include/linux/LzmaDecode.h 2006-12-14 03:13:20.000000000 +0100
679 @@ -0,0 +1,100 @@
680 +/*
681 +  LzmaDecode.h
682 +  LZMA Decoder interface
683 +
684 +  LZMA SDK 4.05 Copyright (c) 1999-2004 Igor Pavlov (2004-08-25)
685 +  http://www.7-zip.org/
686 +
687 +  LZMA SDK is licensed under two licenses:
688 +  1) GNU Lesser General Public License (GNU LGPL)
689 +  2) Common Public License (CPL)
690 +  It means that you can select one of these two licenses and
691 +  follow rules of that license.
692 +
693 +  SPECIAL EXCEPTION:
694 +  Igor Pavlov, as the author of this code, expressly permits you to
695 +  statically or dynamically link your code (or bind by name) to the
696 +  interfaces of this file without subjecting your linked code to the
697 +  terms of the CPL or GNU LGPL. Any modifications or additions
698 +  to this file, however, are subject to the LGPL or CPL terms.
699 +*/
700 +
701 +#ifndef __LZMADECODE_H
702 +#define __LZMADECODE_H
703 +
704 +/* #define _LZMA_IN_CB */
705 +/* Use callback for input data */
706 +
707 +/* #define _LZMA_OUT_READ */
708 +/* Use read function for output data */
709 +
710 +/* #define _LZMA_PROB32 */
711 +/* It can increase speed on some 32-bit CPUs,
712 +   but memory usage will be doubled in that case */
713 +
714 +/* #define _LZMA_LOC_OPT */
715 +/* Enable local speed optimizations inside code */
716 +
717 +#ifndef UInt32
718 +#ifdef _LZMA_UINT32_IS_ULONG
719 +#define UInt32 unsigned long
720 +#else
721 +#define UInt32 unsigned int
722 +#endif
723 +#endif
724 +
725 +#ifdef _LZMA_PROB32
726 +#define CProb UInt32
727 +#else
728 +#define CProb unsigned short
729 +#endif
730 +
731 +#define LZMA_RESULT_OK 0
732 +#define LZMA_RESULT_DATA_ERROR 1
733 +#define LZMA_RESULT_NOT_ENOUGH_MEM 2
734 +
735 +#ifdef _LZMA_IN_CB
736 +typedef struct _ILzmaInCallback
737 +{
738 +  int (*Read)(void *object, unsigned char **buffer, UInt32 *bufferSize);
739 +} ILzmaInCallback;
740 +#endif
741 +
742 +#define LZMA_BASE_SIZE 1846
743 +#define LZMA_LIT_SIZE 768
744 +
745 +/*
746 +bufferSize = (LZMA_BASE_SIZE + (LZMA_LIT_SIZE << (lc + lp)))* sizeof(CProb)
747 +bufferSize += 100 in case of _LZMA_OUT_READ
748 +by default CProb is unsigned short,
749 +but if specify _LZMA_PROB_32, CProb will be UInt32(unsigned int)
750 +*/
751 +
752 +#ifdef _LZMA_OUT_READ
753 +int LzmaDecoderInit(
754 +    unsigned char *buffer, UInt32 bufferSize,
755 +    int lc, int lp, int pb,
756 +    unsigned char *dictionary, UInt32 dictionarySize,
757 +  #ifdef _LZMA_IN_CB
758 +    ILzmaInCallback *inCallback
759 +  #else
760 +    unsigned char *inStream, UInt32 inSize
761 +  #endif
762 +);
763 +#endif
764 +
765 +int LzmaDecode(
766 +    unsigned char *buffer,
767 +  #ifndef _LZMA_OUT_READ
768 +    UInt32 bufferSize,
769 +    int lc, int lp, int pb,
770 +  #ifdef _LZMA_IN_CB
771 +    ILzmaInCallback *inCallback,
772 +  #else
773 +    unsigned char *inStream, UInt32 inSize,
774 +  #endif
775 +  #endif
776 +    unsigned char *outStream, UInt32 outSize,
777 +    UInt32 *outSizeProcessed);
778 +
779 +#endif
780